通俗易懂的分类算法之K近邻详解

通俗易懂的分类算法之K近邻详解

用最通俗的语言和例子,来彻底理解 K近邻(K-Nearest Neighbors,简称 KNN) 这个分类算法。不用担心复杂的数学公式,我会用生活中的例子来解释,保证你一听就懂!


1. K近邻是什么?

K近邻是一种非常简单直观的分类算法。它的核心思想是:物以类聚,人以群分。也就是说,一个数据点的类别,取决于它周围最近的 K 个邻居的类别。

举个例子:

  • 你想判断一个人是喜欢看电影还是喜欢看书,KNN 会看看他身边的朋友都喜欢什么,然后根据朋友们的喜好来判断他的喜好。
  • 它的名字"K近邻"就是因为它的分类依据是"最近的 K 个邻居"。

2. K近邻的核心思想

K近邻的核心思想是:找到离目标点最近的 K 个点,然后根据这 K 个点的类别,投票决定目标点的类别

  • K 值 :K 是一个超参数,表示要考虑多少个邻居。
    • 比如 K=3,就表示看最近的 3 个邻居。
  • 距离 :KNN 通常用欧氏距离来计算两个点之间的距离。
    • 欧氏距离就是两点之间的直线距离。

3. K近邻的工作步骤

K近邻的分类过程可以分为以下几步:

步骤 1:计算距离
  • 对于一个新的数据点,计算它和训练集中每个点的距离。
步骤 2:找到最近的 K 个邻居
  • 选择距离最近的 K 个点。
步骤 3:投票决定类别
  • 对这 K 个点的类别进行投票,票数最多的类别就是新数据点的类别。

4. 举个例子

假设我们有以下数据:

电影评分 游戏评分 类别
5 1 喜欢电影
4 2 喜欢电影
1 5 喜欢游戏
2 4 喜欢游戏

现在有一个新数据点:电影评分=3,游戏评分=3,我们想判断他是喜欢电影还是喜欢游戏。

步骤 1:计算距离
  • 计算新数据点和每个训练数据点的距离(假设用欧氏距离):
    • 距离 (5,1):√[(5-3)² + (1-3)²] = √(4 + 4) = √8 ≈ 2.83
    • 距离 (4,2):√[(4-3)² + (2-3)²] = √(1 + 1) = √2 ≈ 1.41
    • 距离 (1,5):√[(1-3)² + (5-3)²] = √(4 + 4) = √8 ≈ 2.83
    • 距离 (2,4):√[(2-3)² + (4-3)²] = √(1 + 1) = √2 ≈ 1.41
步骤 2:找到最近的 K 个邻居
  • 假设 K=3,选择距离最近的 3 个点:
    • (4,2):距离 1.41,类别=喜欢电影
    • (2,4):距离 1.41,类别=喜欢游戏
    • (5,1):距离 2.83,类别=喜欢电影
步骤 3:投票决定类别
  • 喜欢电影:2 票
  • 喜欢游戏:1 票
  • 最终结果:喜欢电影

5. 如何选择 K 值?

K 值的选择对 KNN 的结果影响很大:

  • K 值太小:容易受到噪声点的影响,导致过拟合。
  • K 值太大:可能会忽略数据的局部特征,导致欠拟合。

通常通过交叉验证来选择最优的 K 值。


6. 优点和缺点

优点
  • 简单直观,容易实现。
  • 不需要训练过程,直接利用数据即可。
  • 适合多分类问题。
缺点
  • 计算量大,尤其是数据量大的时候。
  • 对数据的规模和分布敏感。
  • 需要选择合适的 K 值。

7. 应用场景

  • 推荐系统(比如根据用户喜好推荐电影)
  • 图像分类(比如识别手写数字)
  • 医疗诊断(比如判断疾病类型)
  • 文本分类(比如判断新闻类别)

希望这个通俗的解释能让你彻底理解 K近邻!如果还有疑问,欢迎随时问我! 😊

相关推荐
rainbow724244几秒前
AI证书选型深度分析:如何根据职业目标评估其真正价值
人工智能·机器学习
AI科技星2 分钟前
从ZUFT光速螺旋运动求导推出自然常数e
服务器·人工智能·线性代数·算法·矩阵
love530love5 分钟前
Windows 下 GCC 编译器安装与排错实录
人工智能·windows·python·gcc·msys2·gtk·msys2 mingw 64
倔强的石头1065 分钟前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
老鼠只爱大米6 分钟前
LeetCode经典算法面试题 #78:子集(回溯法、迭代法、动态规划等多种实现方案详细解析)
算法·leetcode·动态规划·回溯·位运算·子集
zhangshuang-peta6 分钟前
通过MCP实现安全的多渠道人工智能集成
人工智能·ai agent·mcp·peta
听麟6 分钟前
HarmonyOS 6.0+ APP AR文旅导览系统开发实战:空间定位与文物交互落地
人工智能·深度学习·华为·ar·wpf·harmonyos
AI_567810 分钟前
阿里云OSS成本优化:生命周期规则+分层存储省70%
运维·数据库·人工智能·ai
执着25910 分钟前
力扣hot100 - 199、二叉树的右视图
数据结构·算法·leetcode
龙山云仓13 分钟前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索