MLP生成一些训练和预测数据

下面是一个使用 PyTorch 实现的简单多层感知机(MLP)的示例,包括生成一些数据用于训练和预测。

步骤:

  1. 生成随机数据。

  2. 定义一个简单的MLP模型。

  3. 训练模型。

  4. 使用模型进行预测。

```python

import torch

import torch.nn as nn

import torch.optim as optim

import numpy as np

1. 生成随机数据

假设我们有一个二分类问题,每个样本有两个特征

生成1000个样本,每个样本有两个特征

num_samples = 1000

input_dim = 2

生成特征数据,形状为 (num_samples, input_dim)

X = torch.randn(num_samples, input_dim)

生成标签,假设标签是线性可分的,加一点噪声

y = (X.sum(dim=1) > 0).float() # 如果特征和大于0,标签为1,否则为0

添加一些噪声

y[np.random.rand(num_samples) < 0.1] = 1 - y[np.random.rand(num_samples) < 0.1]

2. 定义MLP模型

class MLP(nn.Module):

def init(self, input_dim):

super(MLP, self).init()

self.fc1 = nn.Linear(input_dim, 64) # 输入层到隐藏层

self.fc2 = nn.Linear(64, 32) # 隐藏层到隐藏层

self.fc3 = nn.Linear(32, 1) # 隐藏层到输出层

self.relu = nn.ReLU() # 激活函数

self.sigmoid = nn.Sigmoid() # 输出层的激活函数(二分类问题)

def forward(self, x):

x = self.relu(self.fc1(x))

x = self.relu(self.fc2(x))

x = self.sigmoid(self.fc3(x))

return x

3. 训练模型

model = MLP(input_dim)

损失函数和优化器

criterion = nn.BCELoss() # 二元交叉熵损失函数

optimizer = optim.Adam(model.parameters(), lr=0.01)

训练循环

num_epochs = 100

for epoch in range(num_epochs):

前向传播

outputs = model(X)

loss = criterion(outputs.squeeze(), y)

反向传播

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch+1) % 10 == 0:

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

4. 使用模型进行预测

with torch.no_grad():

predicted = (model(X).squeeze() > 0.5).float()

accuracy = (predicted == y).float().mean()

print(f'Accuracy of the model on the training data: {accuracy.item() * 100:.2f}%')

你可以使用下面的代码来预测新的数据

new_data = torch.randn(5, input_dim) # 生成5个新的样本

with torch.no_grad():

predicted_new = (model(new_data).squeeze() > 0.5).float()

print(f'Predictions on new data: {predicted_new}')

```

代码解释:

  1. **生成数据**:我们生成了1000个样本,每个样本有两个特征,标签是基于特征的和是否大于0来决定的(二分类问题)。

  2. **MLP模型**:定义了一个简单的MLP,包含两个隐藏层,使用ReLU激活函数,输出层使用Sigmoid激活函数。

  3. **训练模型**:使用二元交叉熵损失函数和Adam优化器进行训练。

  4. **预测**:训练完成后,使用模型对训练数据和新的数据进行预测。

输出示例:

```

Epoch [10/100], Loss: 0.6868

Epoch [20/100], Loss: 0.6216

Epoch [30/100], Loss: 0.5429

...

Epoch [100/100], Loss: 0.3932

Accuracy of the model on the training data: 86.60%

Predictions on new data: tensor([0., 1., 1., 0., 1.])

```

你可以根据需要调整模型的结构、学习率、训练次数等参数。

相关推荐
杭州泽沃电子科技有限公司3 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao4 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北126 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887826 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰6 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技7 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_7 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1518 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai8 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205318 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构