Stable Diffusion 反向提示词(Negative Prompt)深度解析

Stable Diffusion 反向提示词深度解析(2025最新版)

一、核心定义与作用

反向提示词(Negative Prompt)是用于排除生成图像中特定内容或特征的指令集。通过明确告知模型不应出现的元素,反向提示词可有效解决以下三大问题:

  1. 质量缺陷:消除模糊、畸形、低分辨率等问题,如"low quality", "blurry", "deformed hands"等。
  2. 内容排除:避免生成非预期物体,如"no buildings", "exclude cars"等。
  3. 风格控制:抑制不想要的画风特征,如"avoid cartoon style"等。
二、反向提示词结构模板
(一)通用基础模板

以下是一个适用于所有场景的基础质量保障模板:

markdown 复制代码
lowres, error, cropped, worst quality, low quality, jpeg artifacts, out of frame, watermark, signature
(二)进阶分层结构
层级 作用域 示例词汇
画质控制 全局影响 blurry, low resolution
人体修正 局部优化 deformed hands, extra fingers
内容排除 特定对象 no text, exclude trees
风格抑制 美学方向 avoid anime style
三、高阶应用场景
(一)人物生成控制

通过反向提示词可精准排除以下问题:

  • 肢体异常:deformed limbs, extra arms
  • 面部缺陷:asymmetric eyes, bad teeth
  • 服装限制:no sportswear, avoid hats
(二)场景构建优化
markdown 复制代码
no buildings, exclude cars → 生成纯自然景观
avoid neon colors → 抑制赛博朋克风格元素
四、使用注意事项
  1. 适度原则:过度使用会限制模型创造力,建议3-8个核心词。
  2. 精准表述:优先使用no/avoid等明确否定词,如"no water"优于"not include water"。
  3. 权重配合:在WebUI中通过括号增强排除力度,如"(deformed hands:1.3)"。

实验数据表明:合理使用反向提示词可使图像合格率提升63%,配合CFG Scale=7-9时效果最佳。


相关推荐
金井PRATHAMA几秒前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥18 分钟前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng33 分钟前
学习人工智能所需知识体系及路径详解
人工智能·学习
云道轩1 小时前
使用Docker在Rocky Linux 9.5上在线部署LangFlow
linux·人工智能·docker·容器·langflow
POLOAPI1 小时前
从模型到生产:AI 大模型落地工程与效率优化实践
人工智能·gpt·gemini
谷歌上搜百度1 小时前
LLM并非“万能钥匙”——深度解析大语言模型的本质与边界
人工智能·llm
Wendy14411 小时前
【图像掩膜】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
机器之心2 小时前
开启RL Scaling新纪元,siiRL开源:完全分布式强化学习框架,支持超千卡规模高效训练
人工智能
GISer_Jing2 小时前
Coze:字节跳动AI开发平台功能和架构解析
javascript·人工智能·架构·开源
我有一计3332 小时前
【算法笔记】5.LeetCode-Hot100-矩阵专项
人工智能·算法·程序员