Stable Diffusion 反向提示词(Negative Prompt)深度解析

Stable Diffusion 反向提示词深度解析(2025最新版)

一、核心定义与作用

反向提示词(Negative Prompt)是用于排除生成图像中特定内容或特征的指令集。通过明确告知模型不应出现的元素,反向提示词可有效解决以下三大问题:

  1. 质量缺陷:消除模糊、畸形、低分辨率等问题,如"low quality", "blurry", "deformed hands"等。
  2. 内容排除:避免生成非预期物体,如"no buildings", "exclude cars"等。
  3. 风格控制:抑制不想要的画风特征,如"avoid cartoon style"等。
二、反向提示词结构模板
(一)通用基础模板

以下是一个适用于所有场景的基础质量保障模板:

markdown 复制代码
lowres, error, cropped, worst quality, low quality, jpeg artifacts, out of frame, watermark, signature
(二)进阶分层结构
层级 作用域 示例词汇
画质控制 全局影响 blurry, low resolution
人体修正 局部优化 deformed hands, extra fingers
内容排除 特定对象 no text, exclude trees
风格抑制 美学方向 avoid anime style
三、高阶应用场景
(一)人物生成控制

通过反向提示词可精准排除以下问题:

  • 肢体异常:deformed limbs, extra arms
  • 面部缺陷:asymmetric eyes, bad teeth
  • 服装限制:no sportswear, avoid hats
(二)场景构建优化
markdown 复制代码
no buildings, exclude cars → 生成纯自然景观
avoid neon colors → 抑制赛博朋克风格元素
四、使用注意事项
  1. 适度原则:过度使用会限制模型创造力,建议3-8个核心词。
  2. 精准表述:优先使用no/avoid等明确否定词,如"no water"优于"not include water"。
  3. 权重配合:在WebUI中通过括号增强排除力度,如"(deformed hands:1.3)"。

实验数据表明:合理使用反向提示词可使图像合格率提升63%,配合CFG Scale=7-9时效果最佳。


相关推荐
DatGuy12 分钟前
Week 26: 深度学习补遗:LSTM 原理与代码复现
人工智能·深度学习·lstm
杜子不疼.44 分钟前
光影交织:基于Rokid AI眼镜的沉浸式影视剧情互动体验开发实战
人工智能
IT_陈寒1 小时前
Python高手都在用的5个隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端
love530love1 小时前
【保姆级教程】Windows + Podman 从零部署 Duix-Avatar 数字人项目
人工智能·windows·笔记·python·数字人·podman·duix-avatar
周杰伦_Jay1 小时前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
大模型真好玩1 小时前
低代码Agent开发框架使用指南(八)—Coze 知识库详解
人工智能·agent·coze
2***57422 小时前
人工智能在智能投顾中的算法
人工智能·算法
草莓熊Lotso3 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
youngfengying3 小时前
Swin Transformer
人工智能·深度学习·transformer
User_芊芊君子3 小时前
光影协同:基于Rokid CXR-M SDK构建工业级远程专家协作维修系统
人工智能