Stable Diffusion 反向提示词(Negative Prompt)深度解析

Stable Diffusion 反向提示词深度解析(2025最新版)

一、核心定义与作用

反向提示词(Negative Prompt)是用于排除生成图像中特定内容或特征的指令集。通过明确告知模型不应出现的元素,反向提示词可有效解决以下三大问题:

  1. 质量缺陷:消除模糊、畸形、低分辨率等问题,如"low quality", "blurry", "deformed hands"等。
  2. 内容排除:避免生成非预期物体,如"no buildings", "exclude cars"等。
  3. 风格控制:抑制不想要的画风特征,如"avoid cartoon style"等。
二、反向提示词结构模板
(一)通用基础模板

以下是一个适用于所有场景的基础质量保障模板:

markdown 复制代码
lowres, error, cropped, worst quality, low quality, jpeg artifacts, out of frame, watermark, signature
(二)进阶分层结构
层级 作用域 示例词汇
画质控制 全局影响 blurry, low resolution
人体修正 局部优化 deformed hands, extra fingers
内容排除 特定对象 no text, exclude trees
风格抑制 美学方向 avoid anime style
三、高阶应用场景
(一)人物生成控制

通过反向提示词可精准排除以下问题:

  • 肢体异常:deformed limbs, extra arms
  • 面部缺陷:asymmetric eyes, bad teeth
  • 服装限制:no sportswear, avoid hats
(二)场景构建优化
markdown 复制代码
no buildings, exclude cars → 生成纯自然景观
avoid neon colors → 抑制赛博朋克风格元素
四、使用注意事项
  1. 适度原则:过度使用会限制模型创造力,建议3-8个核心词。
  2. 精准表述:优先使用no/avoid等明确否定词,如"no water"优于"not include water"。
  3. 权重配合:在WebUI中通过括号增强排除力度,如"(deformed hands:1.3)"。

实验数据表明:合理使用反向提示词可使图像合格率提升63%,配合CFG Scale=7-9时效果最佳。


相关推荐
一棵开花的树,枝芽无限靠近你20 分钟前
【Pytorch】(一)使用 PyTorch 进行深度学习:60 分钟速成
人工智能·pytorch·深度学习
墨染天姬21 分钟前
【AI】OCR开源模型排行
人工智能·开源·ocr
幻云201021 分钟前
Python机器学习:从入门到资深
人工智能·python
泰迪智能科技24 分钟前
分享|企业数据挖掘平台产品功能
人工智能·数据挖掘
散峰而望26 分钟前
【算法竞赛】顺序表和vector
c语言·开发语言·数据结构·c++·人工智能·算法·github
FL1717131428 分钟前
Geometric Control
人工智能·算法
郑州光合科技余经理29 分钟前
架构解析:同城本地生活服务o2o平台海外版
大数据·开发语言·前端·人工智能·架构·php·生活
小小工匠30 分钟前
LLM - 将业务 SOP 变成 AI 能力:用 Skill + MCP 驱动 Spring AI 应用落地不完全指南
人工智能·skill·spring ai·mcp
一条咸鱼_SaltyFish33 分钟前
[Day12] 合同审查引擎开发中的技术挑战与解决之道 contract-review-engine
开发语言·人工智能·程序人生·开源软件·ddd·个人开发·ai编程
百***243735 分钟前
GPT-5.2国内稳定调用指南:API中转适配与成本管控实操
大数据·人工智能