一、语音识别技术选型与硅基流动生态解析
1.1 DeepSeek-ASR核心优势
硅基流动平台提供的DeepSeek语音识别服务,在AISHELL-3测试集上实现**96.2%**的准确率,其技术特性包括:
- 多方言支持:覆盖普通话、粤语、川渝方言等8种语言变体
- 噪声抑制:采用Wave-U-Net降噪算法2
- 时间戳定位:支持词语级精度的音频定位(±50ms)
- 免费额度:新用户赠送2000万token(约处理1万小时音频)
- 价格便宜:新用户注册即送14元,而且可以自由充值。注册地址:硅基流动官网
1.2 Spring AI技术栈整合方案
通过Spring AI的统一AI模型接口,开发者可实现:
java
@Configuration
public class AiConfig {
@Bean
public DeepSeekAudioTranscriptionClient transcriptionClient() {
return new DeepSeekAudioTranscriptionClient(
new SiliconFlowService("sk-xxx"),
new AudioTranscriptionOptions());
}
}
注意
:使用spring-AI功能,必须保证springboot版本在3.0以上,且Java版本至少为17+。
二、环境搭建与SDK深度集成
2.1 硅基流动账号配置
访问硅基流动控制台 ,创建ASR专属应用
获取API密钥并配置Quota策略(建议设置QPS≤20)
下载Java SDK并导入本地Maven仓库:
xml
<dependency>
<groupId>cn.siliconflow</groupId>
<artifactId>deepseek-sdk</artifactId>
<version>2.3.1</version>
</dependency>
创建秘钥地址如下图
2.2 Spring Boot工程配置
application.yml
yml
siliconflow:
api-key: sk-xxx
audio:
endpoint: https://api.siliconflow.cn/v1/audio/transcriptions
max-duration: 3600 # 最大音频时长(秒)
allowed-formats: [wav, mp3, flac]
三、工业级语音处理流水线设计
3.1 音频预处理模块
java
public AudioFile preprocessAudio(MultipartFile file) throws IOException {
// FFmpeg格式转换
String cmd = String.format("ffmpeg -i %s -ar 16000 -ac 1 %s",
file.getOriginalFilename(), "output.wav");
Runtime.getRuntime().exec(cmd);
// 分块处理(每5分钟一个块)
return AudioSplitter.splitByDuration(
Paths.get("output.wav"), Duration.ofMinutes(5));
}
3.2 异步批处理实现
java
@Async("audioTaskExecutor")
public CompletableFuture<Transcript> processChunk(AudioChunk chunk) {
TranscriptionRequest request = new TranscriptionRequest(
chunk.getPath(),
new TranscriptionParams(LanguageType.MANDARIN, true));
return CompletableFuture.supplyAsync(() ->
siliconFlowService.transcribe(request));
}
四、核心业务逻辑实现
4.1 控制器层实现
java
@PostMapping("/transcribe")
public ResponseEntity<TranscriptResult> transcribe(
@RequestParam("file") MultipartFile file,
@RequestParam(value = "diarization", defaultValue = "false") boolean diarization) {
// 参数校验
if (!audioService.validateFormat(file)) {
throw new InvalidAudioFormatException();
}
// 预处理与识别
AudioFile processed = audioService.preprocess(file);
List<CompletableFuture<Transcript>> futures = audioService.splitAndRecognize(processed);
// 结果合并
return ResponseEntity.ok(TranscriptMerger.merge(futures));
}
4.2 语音识别核心服务
java
@Service
public class AudioTranscriptionService {
private final SiliconFlowService sfService;
private final ThreadPoolTaskExecutor executor;
@Autowired
public AudioTranscriptionService(SiliconFlowService sfService) {
this.sfService = sfService;
this.executor = new ThreadPoolTaskExecutor();
this.executor.setCorePoolSize(10);
this.executor.setMaxPoolSize(50);
}
public Transcript recognize(Path audioPath) {
TranscriptionRequest request = new TranscriptionRequest(
audioPath,
new TranscriptionParams(LanguageType.MANDARIN, true));
return sfService.transcribe(request)
.retryWhen(Retry.backoff(3, Duration.ofSeconds(1)));
}
}
五、高级特性实现方案
5.1 说话人分离(Diarization)
java
public DiarizationResult diarize(Transcript transcript) {
List<SpeakerSegment> segments = transcript.getSegments()
.stream()
.filter(s -> s.getSpeakerTag() != null)
.collect(Collectors.groupingBy(Segment::getSpeakerTag))
.entrySet()
.stream()
.map(e -> new SpeakerSegment(e.getKey(), mergeText(e.getValue())))
.collect(Collectors.toList());
return new DiarizationResult(segments);
}
5.2 实时流式识别
java
@GetMapping(value = "/stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<TranscriptChunk> streamTranscription(@RequestParam String audioUrl) {
return WebClient.create()
.get()
.uri(audioUrl)
.accept(MediaType.APPLICATION_OCTET_STREAM)
.retrieve()
.bodyToFlux(DataBuffer.class)
.window(Duration.ofSeconds(5))
.flatMap(window ->
sfService.streamTranscribe(window, new TranscriptionParams()))
.timeout(Duration.ofMinutes(30));
}
六、性能优化与生产部署
6.1 负载均衡策略
yaml
siliconflow:
cluster-nodes:
- host: node1.siliconflow.cn
weight: 30
- host: node2.siliconflow.cn
weight: 70
6.2 监控指标采集
java
@Bean
public MeterRegistryCustomizer<PrometheusMeterRegistry> configureMetrics() {
return registry -> {
registry.config().meterFilter(
new MeterFilter() {
@Override
public DistributionStatisticConfig configure(
Meter.Id id,
DistributionStatisticConfig config) {
if (id.getName().contains("audio_transcription")) {
return DistributionStatisticConfig.builder()
.percentiles(0.5, 0.95, 0.99)
.build()
.merge(config);
}
return config;
}
});
};
}
七、安全防护方案
7.1 音频文件病毒扫描
java
public void scanForMalware(Path filePath) throws VirusDetectedException {
try (ClamAVClient client = new ClamAVClient("192.168.1.100", 3310)) {
byte[] reply = client.scan(filePath);
if (!ClamAVClient.isCleanReply(reply)) {
throw new VirusDetectedException(ClamAVClient.getResult(reply));
}
}
}
7.2 敏感词过滤
java
public Transcript filterSensitiveWords(Transcript transcript) {
SensitiveWordFilter filter = new AhoCorasickFilter();
return transcript.getSegments()
.stream()
.map(segment ->
new Segment(
filter.filter(segment.getText()),
segment.getStart(),
segment.getEnd()))
.collect(Transcript.collector());
}