VAE中的负对数似然损失与自适应容忍度

stable diffusion中的vae并没有直接使用L1损失作为重建损失,而是采用了负对数似然损失,代码如下:

python 复制代码
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]

其中self.logvar是一个可以学习的参数。

这里涉及到拉普拉斯分布,其概率密度函数如下

拉普拉斯与正太分布的区别如下,

不直接使用L1损失而采用负对数似然损失是因为考虑到对于纹理,边界这些变化比较剧烈的地方需要更大的容忍度,而不是要求图像完全还原像素。

而使用拉普拉斯不使用正太分布的愿意有以下几点。

(1) 对异常值的鲁棒性
  • 拉普拉斯分布的长尾特性

    拉普拉斯分布对远离均值的值(异常值)的惩罚是线性的(L1),而高斯分布的惩罚是二次的(L2)。

    • 实际意义:在图像生成任务中,某些像素可能存在较大的重建误差(如复杂纹理区域),使用 L1 损失对这些异常值的敏感度更低,模型优化更稳定。

    • 示例:若某个像素的误差为 10,L1 损失贡献为 10,L2 损失贡献为 100。拉普拉斯分布更容忍大误差,避免模型被少数异常像素主导。

(2) 稀疏性诱导
  • L1 正则化与稀疏性

    拉普拉斯分布作为先验时,会倾向于产生稀疏的重建误差(许多误差接近零,少数较大)。

    • 在生成模型中的应用:图像中大部分区域(如平坦背景)容易精确重建,误差集中在小部分复杂区域。拉普拉斯假设更符合这种特性。
(3) 建模非对称性与多模态的灵活性
  • 拉普拉斯分布的对称性限制

    尽管拉普拉斯分布是对称的,但其对误差的线性惩罚比高斯分布更能适应实际数据中非均匀的误差分布。

    • 对比高斯分布:高斯分布强加了一个平滑的二次惩罚,假设误差在所有区域均匀分布,这在真实数据中往往不成立。
相关推荐
TG:@yunlaoda360 云老大17 分钟前
谷歌云AI 时代的算力革命:CPU、GPU 到 TPU 的架构与定位解析
人工智能·架构·googlecloud
AKAMAI18 分钟前
加速采用安全的企业级 Kubernetes 环境
人工智能·云计算
Aspect of twilight29 分钟前
深度学习各种优化器详解
人工智能·深度学习
徽44035 分钟前
农田植被目标检测数据标注与模型训练总结2
人工智能·目标检测·目标跟踪
Elastic 中国社区官方博客43 分钟前
Elasticsearch 中使用 NVIDIA cuVS 实现最高快 12 倍的向量索引速度:GPU 加速第 2 章
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库架构
jkyy20141 小时前
线上线下融合、跨场景协同—社区健康医疗小屋的智能升级
大数据·人工智能·物联网·健康医疗
苏州知芯传感1 小时前
当AI遇见MEMS:机器学习如何优化微振镜的控制与可靠性预测
人工智能·机器学习·3d·mems·微振镜
星域智链1 小时前
AI加持日常小节日:让每一份心意都精准升温✨
人工智能·科技·学习·生活·节日
云和恩墨2 小时前
AI驱动的Oracle SQL优化:从经验依赖到智能协同的三大价值
人工智能·sql·oracle·深度优先·dba
roman_日积跬步-终至千里2 小时前
【模式识别与机器学习(10)】数据预处理-第二部分:数据预处理核心方法
人工智能·机器学习