使用Python给自己网站生成llms.txt

本文提供了一个通过CLI和Python API来解析文件并从中创建llms.txt。输入文件应遵循以下格式:

markdown 复制代码
# FastHTML

> FastHTML is a python library which...

When writing FastHTML apps remember to:

- Thing to remember

## Docs

- [Surreal](https://host/README.md): Tiny jQuery alternative with Locality of Behavior
- [FastHTML quick start](https://host/quickstart.html.md): An overview of FastHTML features

## Examples

- [Todo app](https://host/adv_app.py)

## Optional

- [Starlette docs](https://host/starlette-sml.md): A subset of the Starlette docs

安装

复制代码
pip install llms-txt

如何使用

CLI

安装后,llms_txt2ctx在您的终端中可用。

要获取CLI的帮助:

复制代码
llms_txt2ctx -h

要将llms.txt文件到XML上下文并保存到llms.md:

复制代码
llms_txt2ctx llms.txt > llms.md

通过--optional True添加输入文件的 "选项" 部分。

Python模块

javascript 复制代码
from llms_txt import *
ini 复制代码
samp = Path('llms-sample.txt').read_text()

使用parse_llms_file使用llms.txt文件的部分创建数据结构 (还可以添加optional=True如果需要):

scss 复制代码
parsed = parse_llms_file(samp)
list(parsed)
css 复制代码
['title', 'summary', 'info', 'sections']
复制代码
parsed.title,parsed.summary
vbnet 复制代码
('FastHTML',
 'FastHTML is a python library which brings together Starlette, Uvicorn, HTMX, and fastcore's `FT` "FastTags" into a library for creating server-rendered hypermedia applications.')
scss 复制代码
list(parsed.sections)
css 复制代码
['Docs', 'Examples', 'Optional']
css 复制代码
parsed.sections.Optional[0]
rust 复制代码
{ 'desc': 'A subset of the Starlette documentation useful for FastHTML '
          'development.',
  'title': 'Starlette full documentation',
  'url': 'https://gist.githubusercontent.com/jph00/809e4a4808d4510be0e3dc9565e9cbd3/raw/9b717589ca44cedc8aaf00b2b8cacef922964c0f/starlette-sml.md'}

使用create_ctx创建一个包含XML部分的LLM上下文文件,适用于Claude等系统 (这是CLI在幕后调用的)。

ini 复制代码
ctx = create_ctx(samp)
scss 复制代码
print(ctx[:300])
vbnet 复制代码
<project title="FastHTML" summary='FastHTML is a python library which brings together Starlette, Uvicorn, HTMX, and fastcore&#39;s `FT` "FastTags" into a library for creating server-rendered hypermedia applications.'>
Remember:

- Use `serve()` for running uvicorn (`if __name__ == "__main__"` is not

测试和部署

显示解析有多简单llms.txt文件,这里是一个完整的解析器,在 <20行代码中,没有依赖关系:

python 复制代码
from pathlib import Path
import re,itertools

def chunked(it, chunk_sz):
    it = iter(it)
    return iter(lambda: list(itertools.islice(it, chunk_sz)), [])

def parse_llms_txt(txt):
    "Parse llms.txt file contents in `txt` to a `dict`"
    def _p(links):
        link_pat = '-\s*[(?P<title>[^]]+)]((?P<url>[^)]+))(?::\s*(?P<desc>.*))?'
        return [re.search(link_pat, l).groupdict()
                for l in re.split(r'\n+', links.strip()) if l.strip()]

    start,*rest = re.split(fr'^##\s*(.*?$)', txt, flags=re.MULTILINE)
    sects = {k: _p(v) for k,v in dict(chunked(rest, 2)).items()}
    pat = '^#\s*(?P<title>.+?$)\n+(?:^>\s*(?P<summary>.+?$)$)?\n+(?P<info>.*)'
    d = re.search(pat, start.strip(), (re.MULTILINE|re.DOTALL)).groupdict()
    d['sections'] = sects
    return d

我们提供了一个测试套件tests/test-parse.py并确认此实现通过了所有测试。

相关推荐
码云数智-园园1 小时前
“架构之争,生态之合”:.NET 生态系统对 LoongArch 与 RISC-V 的支持深度解析
架构·.net·risc-v
政安晨2 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
leobertlan7 小时前
2025年终总结
前端·后端·程序员
面向Google编程8 小时前
从零学习Kafka:数据存储
后端·kafka
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
易安说AI9 小时前
Claude Opus 4.6 凌晨发布,我体验了一整晚,说说真实感受。
后端
易安说AI9 小时前
Ralph Loop 让Claude无止尽干活的牛马...
前端·后端
易安说AI9 小时前
用 Claude Code 远程分析生产日志,追踪 Claude Max 账户被封原因
后端