Python卷积神经网络(CNN)来识别和计数不同类型的工业零件

以下三种类型工业零件为例,使用卷积神经网络(CNN)来识别和计数不同类型的工业零件。以下是Python实现步骤:

  1. 数据准备:收集并标注包含不同形状(如方形、圆形、扇形)的工业零件图像数据集。

  2. 模型选择:选择一个预训练的深度学习模型(如ResNet、VGG或MobileNet)作为基础模型,并进行微调。

  3. 模型训练:使用标注好的数据集训练模型,使其能够识别不同形状的零件。

  4. 零件计数:在测试图像上应用训练好的模型,识别并计数不同类型的零件。

代码示例如下,使用Keras和TensorFlow来实现这个系统:

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np

# 1. 数据准备
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)

train_generator = train_datagen.flow_from_directory(
    'path_to_dataset',
    target_size=(150, 150),
    batch_size=32,
    class_mode='categorical',
    subset='training'
)

validation_generator = train_datagen.flow_from_directory(
    'path_to_dataset',
    target_size=(150, 150),
    batch_size=32,
    class_mode='categorical',
    subset='validation'
)

# 2. 模型选择
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.Dense(3, activation='softmax')  # 3 classes: square, circle, sector
])

# 3. 模型训练
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // train_generator.batch_size,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // validation_generator.batch_size,
    epochs=10
)

# 4. 零件计数
from tensorflow.keras.preprocessing import image

def count_parts(image_path):
    img = image.load_img(image_path, target_size=(150, 150))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    predictions = model.predict(img_array)
    predicted_class = np.argmax(predictions, axis=1)
    class_labels = {0: 'square', 1: 'circle', 2: 'sector'}
    return class_labels[predicted_class[0]]

# 示例:计数图像中的零件
image_path = 'path_to_test_image'
print(f"The part in the image is a: {count_parts(image_path)}")
相关推荐
一晌小贪欢4 小时前
Python 爬虫进阶:如何利用反射机制破解常见反爬策略
开发语言·爬虫·python·python爬虫·数据爬虫·爬虫python
躺平大鹅4 小时前
5个实用Python小脚本,新手也能轻松实现(附完整代码)
python
阿猿收手吧!4 小时前
【C++】异步编程:std::async终极指南
开发语言·c++
yukai080084 小时前
【最后203篇系列】039 JWT使用
python
小程故事多_804 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
沐知全栈开发4 小时前
SQL 日期处理指南
开发语言
黎雁·泠崖5 小时前
【魔法森林冒险】3/14 Allen类(一):主角核心属性与初始化
java·开发语言
黎雁·泠崖5 小时前
【魔法森林冒险】1/14 项目总览:用Java打造你的第一个回合制冒险游戏
java·开发语言
独好紫罗兰5 小时前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.5 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化