逻辑回归机器学习

线性组合的基础上加上非线性变换

y=kx+b

torch.nn.linear(input,output)

torch.sigmoid(input)

torch.nn.BCELoss()



复制代码
import numpy as np
import torch
import matplotlib.pyplot as plt
from onnxslim.core import optimize

x = np.linspace(-5,5,20, dtype=np.float32)//-5,5之间随机生成20个数
_b=1/(1 + np.exp(-x))//通过变换得到_b
y = np.random.normal(_b,0.005)//在此基础上加上0.05的噪声来获得y

x = np.float32(x.reshape(-1,1))
y = np.float32(y.reshape(-1,1))


复制代码
class LogicRegressionModel(torch.nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogicRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(input_dim, output_dim)

    def forward(self, x):
        out = torch.sigmoid(self.linear(x))//sigmoid 函数的作用是将输入的实数映射到区间 (0, 1) 上。在神经网络中,激活函数可以引入非线性因素,使得网络能够学习和表示复杂的模式。对于逻辑回归模型来说,sigmoid 函数将线性层的输出转换为一个概率值,即表示输入属于某一类别的可能性。在这段代码中,torch.sigmoid(self.linear(x)) 就是将线性层的输出通过 sigmoid 函数进行变换,得到最终的输出 out,这个 out 的值在 0 到 1 之间,可以被解释为一个概率预测值。
        return out


复制代码
input_dim = 1
output_dim = 1
model = LogicRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss()在二分类问题中,我们希望模型输出一个概率值,表示输入样本属于正类的可能性。二元交叉熵损失就是用来衡量模型预测的概率值与真实标签(通常为 0 或 1,表示负类和正类)之间的差距。如果模型预测的概率值与真实标签越接近,那么二元交叉熵损失就越小;反之,损失就越大。
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)


复制代码
import numpy as np
import torch
import matplotlib.pyplot as plt
from onnxslim.core import optimize

x = np.linspace(-5,5,20, dtype=np.float32)
_b=1/(1 + np.exp(-x))
y = np.random.normal(_b,0.005)

x = np.float32(x.reshape(-1,1))
y = np.float32(y.reshape(-1,1))


class LogicRegressionModel(torch.nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogicRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(input_dim, output_dim)

    def forward(self, x):
        out = torch.sigmoid(self.linear(x))
        return out


input_dim = 1
output_dim = 1
model = LogicRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss()
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

for epoch in range(100):
    epoch +=1
    inputs = torch.from_numpy(x).requires_grad_()
    labels = torch.from_numpy(y)

    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
    print('epoch {}, loss {}'.format(epoch + 1, loss.item()))

# 绘制结果
predicted_y=model(torch.from_numpy(x).requires_grad_()).data.numpy()
print("标签y",y)
print("预测y",predicted_y)
plt.clf()
predicted=model(torch.from_numpy(x).requires_grad_()).data.numpy()
plt.plot(x,y,'go',label='True data',alpha=0.5)
plt.plot(x,predicted_y,'--',label='Predictions',alpha=0.5)
plt.legend(loc='best')
plt.show()
相关推荐
爱华晨宇1 分钟前
CANN Auto-Tune赋能AIGC:智能性能炼金术,解锁生成式AI极致效率
人工智能·aigc
聆风吟º4 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
觉醒大王5 分钟前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
偷吃的耗子9 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航9 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水11 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏11 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特12 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生12 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
feasibility.14 分钟前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode