pytorch tensor创建tensor

目录

一、使用torch.Tensor创建

二、直接生成特殊的tensor

三、仿造其他tensor生成

四、从numpy生成

五、tensor中的to方法


一、使用torch.Tensor创建

python 复制代码
import torch
data=[[1,2],[3,4]]
x_data=torch.tensor(data)  # 将列表和数组传给tensor会自动转成tensor类型
x_data1=torch.tensor((1,2,3,4)) # 使用元组创建
print(x_data1)

二、直接生成特殊的tensor

python 复制代码
import torch
data1=torch.ones(1,2,3) # 创建一个维度为(1,2,3)的元素全为1的tensor
data2=torch.zeros(1,2,3) # 创建一个维度为(1,2,3)的元素全为0的tensor
data3=torch.randn(3,4,5) # 创建一个维度为(3,4,5)的符合正态分布的tensor
data4=torch.eye(4,5) # 创建一个维度为(4,5)的单位矩阵
data5=torch.randint(5,(5,8)) # 创建一个5一下的随机整数维度为(5,8)的tensot
print(type(data4))
print(data4)

三、仿造其他tensor生成

python 复制代码
import torch

data0=torch.Tensor([1,2,3,4])   
data1=torch.ones_like(data0)  # 仿造传入tensor生成相同形式的全为1的tensor
data2=torch.empty_like(data1)  # 生成全为0的tensor
print(data2)

四、从numpy生成

python 复制代码
import torch
import numpy as np

arr=np.array([1,2,3,4])
tensor0=torch.from_numpy(arr)  # 对arr进行了浅拷贝
tensor1=torch.Tensor(arr) # 对arr进行了深拷贝
arr[0]=100
data_numpy=tensor0.numpy() # 将tensor转成numpy
print(tensor0) # 和arr数组一起改变
print(tensor1)

五、tensor中的to方法

1.数据类型转换

python 复制代码
tensor0=torch.ones(4,5)
    tensor1=tensor0.to(torch.int64)  # 将数据类型转换成传入的数据类型
    tensor2=tensor0.to(tensor1)   # 将数据类型转换乘传入的tensor的类型
    print(tensor2)

2.device转化

python 复制代码
def tensor_device_demo():
    if torch.cuda.is_available():
        device=torch.device('cuda:0')
    else:
        device=torch.device('cpu')

    # 将数据转到gpu中运行
    tensor0=torch.randn(4,5)
    tensor1=tensor0.to(device)
相关推荐
秋邱16 小时前
高等教育 AI 智能体的 “导学诊践” 闭环
开发语言·网络·数据库·人工智能·python·docker
数据的世界0116 小时前
重构智慧书-第3条:公开有界,保密有度:行事的分寸准则
人工智能
组合缺一16 小时前
Solon AI 开发学习6 - chat - 两种 http 流式输入输出
python·学习·http
许泽宇的技术分享16 小时前
AgentFramework-零基础入门-第08章_部署和监控代理
人工智能·后端·agent框架·agentframework
沐浴露z16 小时前
为什么使用SpringAI时通常用Builder来创建对象?详解 【Builder模式】和【直接 new】的区别
java·python·建造者模式
数据与后端架构提升之路16 小时前
Map-World:用“填空”与“路径积分”重构自动驾驶规划范式
人工智能·自动驾驶·世界模型·锚点预测
陈天伟教授16 小时前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
青瓷程序设计16 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
IT_陈寒17 小时前
Python开发者必看:5个被低估但能提升200%编码效率的冷门库实战
前端·人工智能·后端
徽44017 小时前
农田植被目标检测数据标注与模型训练总结1
人工智能·目标检测·计算机视觉