OpenCV计算摄影学(15)无缝克隆(Seamless Cloning)调整图像颜色的函数colorChange()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::colorChange 是 OpenCV 中用于调整图像颜色的函数。它允许你通过乘以不同的系数来独立地改变输入图像中红色、绿色和蓝色通道的强度,从而实现对图像色彩的调整。这个功能对于需要精细控制图像色调的应用非常有用。

函数原型

cpp 复制代码
void cv::colorChange 	
(
        InputArray  	src,
		InputArray  	mask,
		OutputArray  	dst,
		float  	red_mul = 1.0f,
		float  	green_mul = 1.0f,
		float  	blue_mul = 1.0f 
	) 		

参数

  • 参数src 输入 8 位 3 通道图像‌34。
  • 参数mask 输入 8 位 1 或 3 通道图像‌35。
  • 参数dst 输出与 src 尺寸和类型相同的图像‌34。
  • 参数red_mul 红色通道乘法因子‌4。
  • 参数green_mul 绿色通道乘法因子‌4。
  • 参数blue_mul 蓝色通道乘法因子‌4。

乘法因子范围在 0.5 至 2.5 之间‌

示例代码

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat src = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/jiangnan.jpg");
    if (src.empty())
    {
        std::cerr << "无法加载图像!" << std::endl;
        return -1;
    }

    // 创建全1掩模(处理整个图像)
    cv::Mat mask = cv::Mat::ones(src.size(), CV_8UC1);

    // 应用颜色变换(调整参数以增强效果)
    cv::Mat dst;
    cv::colorChange(src, mask, dst, 2.5f, 0.1f, 1.0f); // 红通道增强,绿通道减弱

    // 转换为浮点型计算差异
    cv::Mat src_f, dst_f;
    src.convertTo(src_f, CV_32F);
    dst.convertTo(dst_f, CV_32F);

    // 计算绝对差异并归一化‌:ml-citation{ref="1,2" data="citationList"}
    cv::Mat diff_f;
    cv::absdiff(src_f, dst_f, diff_f);
    cv::normalize(diff_f, diff_f, 0, 255, cv::NORM_MINMAX); // 关键修改:归一化数据范围‌:ml-citation{ref="1" data="citationList"}

    // 转换为8位图像
    cv::Mat diff;
    diff_f.convertTo(diff, CV_8U);

    // 增强对比度显示(调整缩放因子)‌:ml-citation{ref="2" data="citationList"}
    cv::Mat enhanced_diff;
    cv::convertScaleAbs(diff, enhanced_diff, 5, 0); // alpha=5 增强差异可见性‌:ml-citation{ref="2" data="citationList"}

    // 显示结果
    cv::imshow("Original Image", src);
    cv::imshow("Processed Image", dst);
    cv::imshow("Difference Image", diff);
    cv::imshow("Enhanced Difference", enhanced_diff);

    // 保存结果(建议使用无损格式)‌:ml-citation{ref="5" data="citationList"}
    cv::imwrite("original.png", src);
    cv::imwrite("processed.png", dst);
    cv::imwrite("difference.png", diff);
    cv::imwrite("enhanced_difference.png", enhanced_diff);

    cv::waitKey(0);
    return 0;
}

运行结果

相关推荐
云天徽上几秒前
【PaddleOCR】OCR常见关键信息抽取数据集,包含FUNSD、XFUND、WildReceipt等整理,持续更新中......
人工智能·计算机视觉·信息可视化·paddlepaddle·paddleocr·文本识别
zskj_zhyl1 分钟前
智绅科技:以科技为翼,构建养老安全守护网
人工智能·科技·安全
刘海东刘海东2 分钟前
结构型智能科技的关键可行性——信息型智能向结构型智能的转换(提纲)
人工智能
Jay Kay1 小时前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio1 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و1 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳1 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
在美的苦命程序员1 小时前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
kngines1 小时前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_071 小时前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费