yolov8自定义实例分割

1.yolo实例分割数据集格式与标注 标注工具labelImg使用方法-CSDN博客(没有多边形的绘制方式)下载: github.com windows直接下载exe.

下载好后与之前的操作都一样,由于labelmg生成的是json文件需要重新写一个脚本生成txt文件,之后和之前一样

之前文章

数据集构建与训练前准备-CSDN博客

模型推理测试与导出-CSDN博客

注意的是实例分割模型训练要用

yolo task=segment mode=train model=yolov8s-seg.pt epochs=5 batch=1
data=co2_dataset.yaml


转化脚本

import json

import os

def json2txt():

json_dir = "C:/yolov8study/cs"

train_label_dir = "C:/yolov8study/cs/1"

valid_label_dir = "C:/yolov8study/cs/2"

确保标签目录存在

if not os.path.exists(train_label_dir):

os.makedirs(train_label_dir)

if not os.path.exists(valid_label_dir):

os.makedirs(valid_label_dir)

files = os.listdir(json_dir)

for json_file in files:

if not json_file.endswith(".json"):

print(f"跳过非 JSON 文件: {json_file}")

continue

json_path = os.path.join(json_dir, json_file)

print(f"正在处理 JSON 文件: {json_file}")

with open(json_path, 'r') as f:

data = json.load(f)

直接从 JSON 数据中获取图像宽高信息

img_width = data.get("imageWidth")

img_height = data.get("imageHeight")

img_name = data.get("imagePath")

if img_name and img_width and img_height:

生成对应的 TXT 文件路径

if img_name.endswith("bmp"):

img_name = img_name.replace("bmp", "jpg")

if img_name.endswith("png"):

img_name = img_name.replace("png", "jpg")

判断 json_dir 路径中是否包含 "valid" 或 "train"

if "valid" in json_dir.lower():

current_label_dir = valid_label_dir

elif "train" in json_dir.lower():

current_label_dir = train_label_dir

else:

print(f"无法确定标签目录,默认使用训练集目录。JSON 文件: {json_file}")

current_label_dir = train_label_dir

data_label_text_f = os.path.join(current_label_dir, img_name.replace(".jpg", ".txt"))

shapes = data.get("shapes", [])

if not shapes:

print(f"JSON 文件 {json_file} 中的 shapes 列表为空,生成的 TXT 文件将为空。")

with open(data_label_text_f, 'w') as file_write_obj:

类别索引固定为 0(只有 cs 标签),仅输出一次

clazz_index = 0

file_write_obj.write(f"{clazz_index}")

遍历所有目标对象

for shape in shapes:

points = shape.get("points", [])

遍历 points 数组中的每个点

for point in points:

x = float(point[0])

y = float(point[1])

转换为 YOLO 格式(仅保留中心点坐标)

cx = x / img_width

cy = y / img_height

写入 TXT 文件,不换行

file_write_obj.write(f" {cx:.6f} {cy:.6f}")

最后添加换行符

file_write_obj.write("\n")

print(f"已处理图像: {img_name},生成标签文件: {data_label_text_f}")

else:

print(f"JSON 文件 {json_file} 缺少必要的图像信息,跳过处理。")

if name == "main":

json2txt()

相关推荐
艾思科蓝 AiScholar2 分钟前
【 IEEE出版 | 快速稳定EI检索 | 往届已EI检索】2025年储能及能源转换国际学术会议(ESEC 2025)
人工智能·计算机网络·自然语言处理·数据挖掘·自动化·云计算·能源
Fulima_cloud3 分钟前
智慧锂电:开启能源新时代的钥匙
大数据·人工智能·物联网
GUOYUGRA3 分钟前
高纯氢能源在线监测分析系统组成和作用
人工智能·算法·机器学习
江木12315 分钟前
NAFNet:Simple Baselines for Image Restoration
论文阅读·图像处理·深度学习
网络安全(king)23 分钟前
基于java社交网络安全的知识图谱的构建与实现
开发语言·网络·深度学习·安全·web安全·php
Ronin-Lotus35 分钟前
深度学习篇---Opencv中的机器学习和深度学习
python·深度学习·opencv·机器学习
沸点小助手1 小时前
Remote-SSH × 自定义模型 | Trae 体验活动 No.1
人工智能
꧁༺△再临ཊ࿈ཏTSC△༻꧂1 小时前
【数码科技】文心一言4.0 VS DEEPSEEK V3
人工智能·文心一言
明月与玄武1 小时前
AI把汽车变成“移动硅基生命体“
人工智能·汽车
阿噜噜小栈1 小时前
如何用AI制作我们记忆中的乡村夜景
人工智能·经验分享·笔记