[动手学习深度学习]13.丢弃法 Dropout

权重衰退是常见处理过拟合的方法

丢弃法比权重衰退效果要好

动机

  • 一个好的模型 需要第输入数据的扰动具有鲁棒性
    • 使用有噪音的数据等价于Tikhonov正则
    • 丢弃法:在层之间加入噪音

(所以丢弃法其实是一个正则)

无偏差的加入噪音

  • 对x加入噪音得到x',我们希望
    E [ x ′ ] = x E[x'] = x E[x′]=x
  • 丢弃法对每个元素进行如下扰动

使用

通常将丢弃法作用在隐藏全连接层的输出上

对隐藏层的每一个神经元做dropout,使每一个都有p概率变为0

即去掉一些权重(每次可能去掉的不一样)

在训练中使用

推理中的丢弃法

  • 正则项只在训练中使用:他们影响模型参数的更新

  • 在推理过程中,dropout直接返回输入

    python 复制代码
    h=dropout(h)

    这样也能保证确定性的输出
    每次随机的采样一些子神经网络

总结

  • 丢弃法将一些输出项随机置0来控制模型复杂度
  • 常作用在多层感知机的隐藏层输出上
  • 丢弃概率使控制模型复杂度的超参数
相关推荐
DKPT2 小时前
JVM栈溢出和堆溢出哪个先满?
java·开发语言·jvm·笔记·学习
fyakm2 小时前
RNN的注意力机制:原理与实现(代码示例)
rnn·深度学习·神经网络
金井PRATHAMA5 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh5 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
拆房老料6 小时前
Transformer推理优化全景:从模型架构到硬件底层的深度解析
深度学习·ai·自然语言处理·transformer
CiLerLinux6 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20238 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
今天只学一颗糖8 小时前
Linux学习笔记--insmod 命令
linux·笔记·学习
charlie1145141918 小时前
精读C++20设计模式:行为型设计模式:中介者模式
c++·学习·设计模式·c++20·中介者模式
楼田莉子8 小时前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习