[动手学习深度学习]13.丢弃法 Dropout

权重衰退是常见处理过拟合的方法

丢弃法比权重衰退效果要好

动机

  • 一个好的模型 需要第输入数据的扰动具有鲁棒性
    • 使用有噪音的数据等价于Tikhonov正则
    • 丢弃法:在层之间加入噪音

(所以丢弃法其实是一个正则)

无偏差的加入噪音

  • 对x加入噪音得到x',我们希望
    E [ x ′ ] = x E[x'] = x E[x′]=x
  • 丢弃法对每个元素进行如下扰动

使用

通常将丢弃法作用在隐藏全连接层的输出上

对隐藏层的每一个神经元做dropout,使每一个都有p概率变为0

即去掉一些权重(每次可能去掉的不一样)

在训练中使用

推理中的丢弃法

  • 正则项只在训练中使用:他们影响模型参数的更新

  • 在推理过程中,dropout直接返回输入

    python 复制代码
    h=dropout(h)

    这样也能保证确定性的输出
    每次随机的采样一些子神经网络

总结

  • 丢弃法将一些输出项随机置0来控制模型复杂度
  • 常作用在多层感知机的隐藏层输出上
  • 丢弃概率使控制模型复杂度的超参数
相关推荐
Deepoch18 小时前
“即插即用”的智能升级:具身智能模块如何破解机器人产业化难题
人工智能·科技·机器人·开发板·未来·具身模型·deepoc
AI营销前沿18 小时前
原圈科技AI营销内容生产革新险企内容工厂新模式解析
人工智能
小北的AI科技分享18 小时前
科普AI搜索优化:传统SEO变革与新技术概述
人工智能
stars-he18 小时前
FPGA学习笔记(6)逻辑设计小结与以太网发送前置
笔记·学习·fpga开发
weixin_3954489118 小时前
TDA4工程和tda2工程相比,数据预处理部分tda4有哪些升级?带来了什么好处,tda2原来的数据预处理有哪些坏处
人工智能·python·机器学习
xiangzhihong818 小时前
GPU的集体运算是如何工作的
人工智能
黑客思维者18 小时前
一文读懂神经网络分类:从基础架构到前沿融合
人工智能·神经网络·分类
Francek Chen18 小时前
【自然语言处理】应用02:情感分析:使用循环神经网络
人工智能·pytorch·rnn·深度学习·神经网络·自然语言处理
AI营销前沿18 小时前
原圈科技AI CRM系统全景解析:智能化赋能营销增长新突破
人工智能
GIOTTO情18 小时前
多模态舆情监测技术深度解析:Infoseek 如何实现 AI 造假与短视频舆情的精准捕捉?
人工智能·音视频