机器学习常见激活函数

Sigmoid 函数

常用于二分类问题

优点

函数的值域在(0,1)之间,可将任意实数映射到0到1的区间,常被用于将输出解释为概率。

将很大范围内的输入特征值压缩到0~1之间,使得在深层网络中可以保持数据幅度不会出现较大的变化,而Relu函数则不会对数据的幅度作出约束;

缺点:

当输入非常大或非常小的时候,输出基本为常数,即变化非常小,进而导致梯度接近于0;

梯度可能会过早消失,进而导致收敛速度较慢,例如与Tanh函数相比,其就比sigmoid函数收敛更快,是因为其梯度消失问题较sigmoid函数要轻一些;

softmax

Softmax一般用来作为神经网络的最后一层 ,用于多分类问题的输出。其本质是一种激活函数,将一个数值向量归一化为一个概率分布向量,且各个概率之和为1。

Tanh

Relu(修正线性单元)

相关推荐
StarPrayers.10 分钟前
K-means 聚类
机器学习·kmeans·聚类
极客学术工坊5 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
庄周迷蝴蝶5 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran6 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
哥布林学者7 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(一)超参数调整
深度学习·ai
qy-ll8 小时前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
G31135422738 小时前
深度学习中适合长期租用的高性价比便宜的GPU云服务器有哪些?
服务器·人工智能·深度学习
徐行tag8 小时前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习
8Qi89 小时前
Stable Diffusion详解
人工智能·深度学习·stable diffusion·图像生成
ChoSeitaku9 小时前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵