机器学习常见激活函数

Sigmoid 函数

常用于二分类问题

优点

函数的值域在(0,1)之间,可将任意实数映射到0到1的区间,常被用于将输出解释为概率。

将很大范围内的输入特征值压缩到0~1之间,使得在深层网络中可以保持数据幅度不会出现较大的变化,而Relu函数则不会对数据的幅度作出约束;

缺点:

当输入非常大或非常小的时候,输出基本为常数,即变化非常小,进而导致梯度接近于0;

梯度可能会过早消失,进而导致收敛速度较慢,例如与Tanh函数相比,其就比sigmoid函数收敛更快,是因为其梯度消失问题较sigmoid函数要轻一些;

softmax

Softmax一般用来作为神经网络的最后一层 ,用于多分类问题的输出。其本质是一种激活函数,将一个数值向量归一化为一个概率分布向量,且各个概率之和为1。

Tanh

Relu(修正线性单元)

相关推荐
丁浩66617 小时前
Python机器学习---1.数据类型和算法:线性回归
开发语言·python·机器学习·线性回归
流烟默17 小时前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习
格林威17 小时前
近红外工业相机的简单介绍和场景应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造·工业相机
JJJJ_iii17 小时前
【机器学习07】 激活函数精讲、Softmax多分类与优化器进阶
人工智能·笔记·python·算法·机器学习·分类·线性回归
Pocker_Spades_A17 小时前
机器学习之生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
Theodore_102218 小时前
机器学习(2) 线性回归和代价函数
人工智能·深度学习·机器学习·线性回归·代价函数
机器学习之心18 小时前
198种组合算法+优化RF随机森林+SHAP分析+新数据预测!机器学习可解释分析,强烈安利,粉丝必备!
算法·随机森林·机器学习·shap分析·198种组合算法
技术闲聊DD19 小时前
深度学习(13)-PyTorch 数据转换
人工智能·pytorch·深度学习
星期天要睡觉19 小时前
深度学习——基于 PyTorch 的蔬菜图像分类
人工智能·pytorch·python·深度学习·分类