多级缓存架构实战:Caffeine+Redis

一、架构演进与核心价值

1.1 性能对比数据

1.2 协同设计优势

二、实战案例:电商商品详情页优化

2.1 痛点分析

原始架构:单层 Redis 缓存

问题现象:

bash 复制代码
# 压测数据
Requests/sec: 58000
99% latency: 120ms
Redis CPU Usage: 85%

2.2 架构改造方案

核心依赖(Spring Boot)

xml 复制代码
<!-- Caffeine依赖 -->
<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
</dependency>

<!-- Redis依赖 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

缓存配置

java 复制代码
@Configuration
public class CacheConfig {
    // 本地缓存配置(Caffeine)
    @Bean
    public CacheManager caffeineCache() {
        return Caffeine.newBuilder()
            .expireAfterWrite(5, TimeUnit.SECONDS)  // 短周期防穿透
            .maximumSize(1000)
            .build();
    }

    // 分布式缓存配置(Redis)
    @Bean
    public RedisCacheManager redisCache(RedisConnectionFactory factory) {
        return RedisCacheManager.builder(factory)
            .expireAfter(30, TimeUnit.SECONDS)
            .build();
    }
}

服务层实现

java 复制代码
@Service
public class ProductService {
    @Cacheable(value = "product", key = "#id", cacheManager = "caffeineCache")
    public Product getProduct(Long id) {
        return redisTemplate.opsForValue().get("product:" + id);
    }

    @CachePut(value = "product", key = "#result.id", cacheManager = "redisCache")
    public Product updateProduct(Product product) {
        // 更新数据库和Redis
        return product;
    }
}

三、一致性保障策略

3.1 缓存更新模式

java 复制代码
// 双写策略
public void updateProductStock(Long productId, int delta) {
    // 1. 更新数据库
    productMapper.updateStock(productId, delta);

    // 2. 更新Redis
    redisTemplate.opsForValue().set("product:" + productId, updatedProduct);

    // 3. 逐出Caffeine缓存
    caffeineCache.evict(productId);
}

3.2 穿透/雪崩防护

java 复制代码
// 空值防护策略
public Product getProduct(Long id) {
    Product product = caffeineCache.getIfPresent(id);
    if (product == null) {
        product = redisTemplate.opsForValue().get("product:" + id);
        if (product == null) {
            product = DB.get(id);
            if (product == null) {
                product = NULL_PRODUCT;  // 特殊空对象
            }
            redisTemplate.opsForValue().set("product:" + id, product, 60, SECONDS);
        }
        caffeineCache.put(id, product);
    }
    return product == NULL_PRODUCT ? null : product;
}

四、性能压测与调优

4.1 压测结果

4.2 JVM 参数优化

bash 复制代码
# 优化GC配置
-XX:+UseG1GC
-XX:MaxGCPauseMillis=100
-XX:InitiatingHeapOccupancyPercent=35

五、落地 Checklist

5.1 监控体系

bash 复制代码
# Prometheus监控指标
-pattern:"cache_hits_total"
name:"caffeine_cache_hits"
labels:
    tier:"local"
-pattern:"redis_cache_hits"
labels:
    tier:"distributed"

5.2 降级策略

java 复制代码
// 降级开关
@HystrixCommand(fallbackMethod = "getProductFallback")
public Product getProduct(Long id) {
    // 正常逻辑
}

public Product getProductFallback(Long id) {
    return localCache.getIfPresent(id);  // 降级到本地缓存
}

5.3 冷启动策略

java 复制代码
// 预热脚本
@PostConstruct
public void warmUpCache() {
    List<Long> hotIds = productMapper.selectHotIds(1000);
    hotIds.parallelStream().forEach(id ->
        caffeineCache.put(id, productMapper.selectById(id))
    );
}

六、总结与思考

架构设计三原则:

  • 速度优先:Caffeine 处理 80%热数据
  • 容量分层:Redis 存储全量数据
  • 最终一致:通过 MQ 实现异步同步

未来演进:

  • 结合 Service Mesh 实现无侵入缓存
  • 利用 eBPF 技术实现内核级缓存
  • 探索存算分离架构
相关推荐
攀登的牵牛花2 分钟前
前端向架构突围系列 - 框架设计(五):契约继承原则
前端·架构
Codeking__1 小时前
Redis初识——什么是Redis
数据库·redis·mybatis
Full Stack Developme1 小时前
Redis 可以实现哪些业务功能
数据库·redis·缓存
ohoy2 小时前
RedisTemplate 使用之Set
java·开发语言·redis
小小工匠2 小时前
LLM - 从定制化 Agent 到 Universal Agent + Skills Library:下一代智能体架构实践
架构·定制化agent·universal agent·skill library
neoooo3 小时前
🍃Spring Boot 多模块项目中 Parent / BOM / Starter 的正确分工
java·后端·架构
菜鸟的迷茫3 小时前
为了防雪崩加了限流,结果入口先挂了
java·后端·架构
想摆烂的不会研究的研究生3 小时前
每日八股——Redis(2)
数据库·redis·缓存
optimistic_chen3 小时前
【Redis系列】主从复制
linux·数据库·redis·缓存·中间件·命令行·主从复制