Pytorch中矩阵乘法使用及案例

六种矩阵乘法

torch中包含许多矩阵乘法,大致可以分为以下几种:

  • *:即a * b 按位相乘,要求ab的形状必须一致,支持广播操作

  • torch.matmul():最广泛的矩阵乘法

  • @:与torch.matmul()效果一样(等价),即torch.matmul(a, b) == a @ b

  • torch.dot():两个一维向量乘法,不支持广播

  • torch.mm():两个二维矩阵的乘法,不支持广播

  • torch.bmm():两个三维矩阵乘法(批次batch粒度),且两个矩阵必须是三维的,不支持广播操作

其中,torch.matmul()中包含torch.dot()torch.mm()torch.bmm()

代码验证

torch.dot()

python 复制代码
a = torch.tensor([2, 3])
b = torch.tensor([2, 1])

## 下面四个函数的结果是一样的  结果都是7
a.dot(b)
torch.dot(a, b)
a @ b
torch.matmul(a, b)

输出结果:

torch.matmul()torch.dot()的主要区别就是,当两个向量(矩阵)的维度不一致时,torch.matmul()会进行广播 ,而torch.dot()会报错

*

对向量ab进行按位相乘

python 复制代码
a = torch.tensor([2, 3])
b = torch.tensor([2, 1])

a * b  # [4, 3]

torch.mm()

用于二维矩阵的相乘------第一个向量的 和第二个向量的 必须相等

python 复制代码
mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)

## 下面三个输出结果是一样的
torch.mm(mat1, mat2)
mat1.matmul(mat2)
mat1 @ mat2

输出结果:

torch.matmul()torch.mm()的主要区别就是,当两个矩阵的维度不一致时,torch.matmul()会进行广播 ,而torch.mm()会报错

torch.bmm()

应用于三维矩阵,要求:

  • 两个矩阵的第一个维度的大小必须相同
  • 必须满足第一个矩阵:(b × n × m),第二个矩阵:(b × m × p),即第一个矩阵的第三个维度必须和第二个矩阵的第二个维度相同
  • 输出大小:(b × n × p)

该函数相当于分别对每个batch进行二维矩阵相乘

python 复制代码
bmat1 = torch.randn(2, 1, 4)
bmat2 = torch.randn(2, 4, 2)

## 下面三个输出是一样的
torch.bmm(bmat1, bmat2)
bmat1.matmul(bmat2)
bmat1 @ bmat2

输出结果:

换一种角度想,torch.bmm()就是相当于按照批次batch进行索引,然后将每个批次内的二维矩阵进行相乘

python 复制代码
for i in range(bmat1.shape[0]):  # 索引出来批次bmat1.shape[0]
    temp =torch.mm(bmat1[i, :, :], bmat2[i, :, :])
    print(temp)
相关推荐
小王毕业啦3 小时前
2011-2020年 全国省市县-数字普惠金融指数&数字经济指数&绿色金融指数&县域数字乡村指数
大数据·人工智能·数据挖掘·数据分析·毕业论文·数据统计·社科数据
Python数据分析与机器学习4 小时前
《基于大数据的营养果蔬推荐系统的设计与实现》开题报告
大数据·开发语言·人工智能·深度学习·神经网络·算法·计算机视觉
訾博ZiBo5 小时前
AI日报 - 2025年3月15日
人工智能
紫雾凌寒5 小时前
计算机视觉|首次写入政府工作报告!这个科技新词“具身智能”到底是什么?
人工智能·计算机视觉·cnn·transformer·具身智能·ei
cnbestec6 小时前
IXTUR气控永磁铁:以高精度气控和稳定磁场,为机器人应用提供稳定抓取力
人工智能·机器人·欣佰特
S181517004866 小时前
美发行业的数字化转型:从痛点出发,探索未来新机遇
大数据·人工智能·经验分享·笔记·科技
静心问道6 小时前
LLaMA:开放且高效的基础语言模型
人工智能·语言模型·llama
猎人everest6 小时前
机器学习之线性代数
人工智能·线性代数·机器学习