Pytorch中矩阵乘法使用及案例

六种矩阵乘法

torch中包含许多矩阵乘法,大致可以分为以下几种:

  • *:即a * b 按位相乘,要求ab的形状必须一致,支持广播操作

  • torch.matmul():最广泛的矩阵乘法

  • @:与torch.matmul()效果一样(等价),即torch.matmul(a, b) == a @ b

  • torch.dot():两个一维向量乘法,不支持广播

  • torch.mm():两个二维矩阵的乘法,不支持广播

  • torch.bmm():两个三维矩阵乘法(批次batch粒度),且两个矩阵必须是三维的,不支持广播操作

其中,torch.matmul()中包含torch.dot()torch.mm()torch.bmm()

代码验证

torch.dot()

python 复制代码
a = torch.tensor([2, 3])
b = torch.tensor([2, 1])

## 下面四个函数的结果是一样的  结果都是7
a.dot(b)
torch.dot(a, b)
a @ b
torch.matmul(a, b)

输出结果:

torch.matmul()torch.dot()的主要区别就是,当两个向量(矩阵)的维度不一致时,torch.matmul()会进行广播 ,而torch.dot()会报错

*

对向量ab进行按位相乘

python 复制代码
a = torch.tensor([2, 3])
b = torch.tensor([2, 1])

a * b  # [4, 3]

torch.mm()

用于二维矩阵的相乘------第一个向量的 和第二个向量的 必须相等

python 复制代码
mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)

## 下面三个输出结果是一样的
torch.mm(mat1, mat2)
mat1.matmul(mat2)
mat1 @ mat2

输出结果:

torch.matmul()torch.mm()的主要区别就是,当两个矩阵的维度不一致时,torch.matmul()会进行广播 ,而torch.mm()会报错

torch.bmm()

应用于三维矩阵,要求:

  • 两个矩阵的第一个维度的大小必须相同
  • 必须满足第一个矩阵:(b × n × m),第二个矩阵:(b × m × p),即第一个矩阵的第三个维度必须和第二个矩阵的第二个维度相同
  • 输出大小:(b × n × p)

该函数相当于分别对每个batch进行二维矩阵相乘

python 复制代码
bmat1 = torch.randn(2, 1, 4)
bmat2 = torch.randn(2, 4, 2)

## 下面三个输出是一样的
torch.bmm(bmat1, bmat2)
bmat1.matmul(bmat2)
bmat1 @ bmat2

输出结果:

换一种角度想,torch.bmm()就是相当于按照批次batch进行索引,然后将每个批次内的二维矩阵进行相乘

python 复制代码
for i in range(bmat1.shape[0]):  # 索引出来批次bmat1.shape[0]
    temp =torch.mm(bmat1[i, :, :], bmat2[i, :, :])
    print(temp)
相关推荐
我狸才不是赔钱货21 小时前
CUDA:通往大规模并行计算的桥梁
c++·人工智能·pytorch
MicroTech202521 小时前
MLGO微算法科技 LOP算法:实现多用户无线传感系统中边缘协同AI推理的智能优化路径
人工智能·科技·算法
weixin_贾21 小时前
水文气象领域的时间序列分析:从Pytorch/R入门到Transformer/Mamba精通
pytorch·r语言·transformer·水文气象·时间序列
AAIshangyanxiu21 小时前
【案例教程】从入门到精通-AI支持下的-ArcGIS数据处理、空间分析、可视化及多案例综合应用
人工智能·arcgis·遥感图像处理·arcgis土地利用
碧海银沙音频科技研究院21 小时前
i2s的LRCK时钟有毛刺以及BCLK数据在高采样率有变形数据解析错误问题原因以及解决方法
人工智能·深度学习·算法·分类·音视频
IT_陈寒21 小时前
Redis性能翻倍的5个冷门优化技巧,90%的开发者都不知道第3个!
前端·人工智能·后端
Jc.MJ1 天前
安装Pytorch GPU+CPU版本【通过本地安装解决无法使用pip指令下载问题】
人工智能·pytorch·pip
my1_1my1 天前
深度学习中的两个不确定性
人工智能·深度学习
小范馆1 天前
AI大模型-深度学习相关概念
人工智能·深度学习
大连好光景1 天前
LSTM模型做二分类(PyTorch实现)
pytorch·分类·lstm