数学 :矩阵

文章目录

    • 前言
    • [1. 基本矩阵运算](#1. 基本矩阵运算)
      • [1.1 矩阵加法](#1.1 矩阵加法)
      • [1.2 矩阵减法](#1.2 矩阵减法)
      • [1.3 矩阵乘法](#1.3 矩阵乘法)
    • [2. 转置矩阵](#2. 转置矩阵)
    • [3. 旋转矩阵](#3. 旋转矩阵)
    • 小结

【全文大纲】 : https://blog.csdn.net/Engineer_LU/article/details/135149485


前言

在许多应用场合下,我们都需要用矩阵来表示公式,接下来简洁描述矩阵用法

1. 基本矩阵运算

1.1 矩阵加法

∣ a 1 b 1 c 1 d 1 ∣ + ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 + a 2 b 1 + b 2 c 1 + c 2 d 1 + d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| + \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1+a_2 & b_1+b_2\\ c_1+c_2 & d_1+d_2\\ \end{matrix} \right| a1c1b1d1 + a2c2b2d2 = a1+a2c1+c2b1+b2d1+d2

1.2 矩阵减法

∣ a 1 b 1 c 1 d 1 ∣ − ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 − a 2 b 1 − b 2 c 1 − c 2 d 1 − d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| - \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1-a_2 & b_1-b_2\\ c_1-c_2 & d_1-d_2\\ \end{matrix} \right| a1c1b1d1 − a2c2b2d2 = a1−a2c1−c2b1−b2d1−d2

1.3 矩阵乘法

∣ a 1 b 1 c 1 d 1 ∣ ∗ ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 a 2 + b 1 c 2 a 1 b 2 + b 1 d 2 c 1 a 2 + d 1 c 2 c 1 b 2 + d 1 d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| * \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1a_2+b_1c_2 & a_1b_2+b_1d_2\\ c_1a_2+d_1c_2 & c_1b_2+d_1d_2\\ \end{matrix} \right| a1c1b1d1 ∗ a2c2b2d2 = a1a2+b1c2c1a2+d1c2a1b2+b1d2c1b2+d1d2

注意事项 :

1 . 矩阵基本运算没有除法。

2 . 矩阵乘法有限制条件 : m n ∗ n p = m p mn*np=mp mn∗np=mp


2. 转置矩阵

A = ∣ a d b e c f ∣ A = \left|\begin{matrix} a & d\\ b & e\\ c & f\\ \end{matrix} \right| A= abcdef

B = ∣ a b c d e f ∣ B = \left|\begin{matrix} a & b & c\\ d & e & f\\ \end{matrix} \right| B= adbecf

B = A ′ B = A' B=A′


3. 旋转矩阵

∣ X b Y b ∣ = ∣ c o s θ s i n θ − s i n θ c o s θ ∣ ∣ X a Y a ∣ \left|\begin{matrix} X_b\\ Y_b\\ \end{matrix} \right|= \left|\begin{matrix} cosθ & sinθ\\ -sinθ & cosθ\\ \end{matrix} \right| \left|\begin{matrix} X_a\\ Y_a\\ \end{matrix} \right| XbYb = cosθ−sinθsinθcosθ XaYa


小结

本文秉承简洁的风格,适合阅读,谢谢观看。

技术交流QQ群 : 745662457

群内专注问题答疑,项目外包,技术研究

相关推荐
Keying,,,,21 小时前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
易木木木响叮当2 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
东方佑3 天前
UniVoc:基于二维矩阵映射的多语言词汇表系统
人工智能·算法·矩阵
火车叨位去19493 天前
力扣top100(day01-05)--矩阵
算法·leetcode·矩阵
厦门辰迈智慧科技有限公司4 天前
现代化水库运行管理矩阵建设的要点
运维·网络·物联网·线性代数·安全·矩阵·监测
{⌐■_■}4 天前
【MongoDB】简单理解聚合操作,案例解析
数据库·线性代数·mongodb
文弱_书生5 天前
为什么神经网络的权重矩阵具有低秩特性?如何理解和解释?
人工智能·神经网络·矩阵
盛世隐者7 天前
【线性代数】线性方程组与矩阵——行列式
线性代数
盛世隐者7 天前
【线性代数】线性方程组与矩阵——(1)线性方程组与矩阵初步
线性代数
夜斗小神社7 天前
【LeetCode 热题 100】(六)矩阵
算法·leetcode·矩阵