数学 :矩阵

文章目录

    • 前言
    • [1. 基本矩阵运算](#1. 基本矩阵运算)
      • [1.1 矩阵加法](#1.1 矩阵加法)
      • [1.2 矩阵减法](#1.2 矩阵减法)
      • [1.3 矩阵乘法](#1.3 矩阵乘法)
    • [2. 转置矩阵](#2. 转置矩阵)
    • [3. 旋转矩阵](#3. 旋转矩阵)
    • 小结

【全文大纲】 : https://blog.csdn.net/Engineer_LU/article/details/135149485


前言

在许多应用场合下,我们都需要用矩阵来表示公式,接下来简洁描述矩阵用法

1. 基本矩阵运算

1.1 矩阵加法

∣ a 1 b 1 c 1 d 1 ∣ + ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 + a 2 b 1 + b 2 c 1 + c 2 d 1 + d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| + \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1+a_2 & b_1+b_2\\ c_1+c_2 & d_1+d_2\\ \end{matrix} \right| a1c1b1d1 + a2c2b2d2 = a1+a2c1+c2b1+b2d1+d2

1.2 矩阵减法

∣ a 1 b 1 c 1 d 1 ∣ − ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 − a 2 b 1 − b 2 c 1 − c 2 d 1 − d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| - \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1-a_2 & b_1-b_2\\ c_1-c_2 & d_1-d_2\\ \end{matrix} \right| a1c1b1d1 − a2c2b2d2 = a1−a2c1−c2b1−b2d1−d2

1.3 矩阵乘法

∣ a 1 b 1 c 1 d 1 ∣ ∗ ∣ a 2 b 2 c 2 d 2 ∣ = ∣ a 1 a 2 + b 1 c 2 a 1 b 2 + b 1 d 2 c 1 a 2 + d 1 c 2 c 1 b 2 + d 1 d 2 ∣ \left|\begin{matrix} a_1 & b_1\\ c_1 & d_1\\ \end{matrix} \right| * \left|\begin{matrix} a_2 & b_2\\ c_2 & d_2\\ \end{matrix} \right| = \left|\begin{matrix} a_1a_2+b_1c_2 & a_1b_2+b_1d_2\\ c_1a_2+d_1c_2 & c_1b_2+d_1d_2\\ \end{matrix} \right| a1c1b1d1 ∗ a2c2b2d2 = a1a2+b1c2c1a2+d1c2a1b2+b1d2c1b2+d1d2

注意事项 :

1 . 矩阵基本运算没有除法。

2 . 矩阵乘法有限制条件 : m n ∗ n p = m p mn*np=mp mn∗np=mp


2. 转置矩阵

A = ∣ a d b e c f ∣ A = \left|\begin{matrix} a & d\\ b & e\\ c & f\\ \end{matrix} \right| A= abcdef

B = ∣ a b c d e f ∣ B = \left|\begin{matrix} a & b & c\\ d & e & f\\ \end{matrix} \right| B= adbecf

B = A ′ B = A' B=A′


3. 旋转矩阵

∣ X b Y b ∣ = ∣ c o s θ s i n θ − s i n θ c o s θ ∣ ∣ X a Y a ∣ \left|\begin{matrix} X_b\\ Y_b\\ \end{matrix} \right|= \left|\begin{matrix} cosθ & sinθ\\ -sinθ & cosθ\\ \end{matrix} \right| \left|\begin{matrix} X_a\\ Y_a\\ \end{matrix} \right| XbYb = cosθ−sinθsinθcosθ XaYa


小结

本文秉承简洁的风格,适合阅读,谢谢观看。

技术交流QQ群 : 745662457

群内专注问题答疑,项目外包,技术研究

相关推荐
激动的兔子16 分钟前
Arcgis二次开发--评价单元综合限制级别判断矩阵工具
线性代数·arcgis·矩阵
geffen16881 小时前
4K@60Hz高清无缝混合插卡矩阵8x8 16x16 32x32 40x40 80x80
矩阵
ScilogyHunter1 小时前
CW方程的向量形式与解析形式
算法·矩阵·控制
辰尘_星启14 小时前
[线性代数]矩阵/向量求导为什么要区别分子布局和分母布局
神经网络·线性代数·数学·矩阵·控制·导数
西***634717 小时前
从被动响应到主动预判:矩阵技术重塑机场安全监控新生态
线性代数·矩阵
梯度下降中18 小时前
求职面试中的线代知识总结
人工智能·线性代数·算法·机器学习
We་ct20 小时前
LeetCode 289. 生命游戏:题解+优化,从基础到原地最优
前端·算法·leetcode·矩阵·typescript
fie88891 天前
MATLAB中LASSO方法的特征矩阵优化与特征选择实现
开发语言·matlab·矩阵
Candice Can1 天前
【机器学习】吴恩达机器学习Lecture3-Linear Algebra review(optional) 线性代数回顾
人工智能·线性代数·机器学习·吴恩达机器学习
颢珂智库Haokir Insights1 天前
线性代数 (Linear Algebra) 的数学模型示例:数据变换
线性代数