机器学习——正则化、欠拟合、过拟合、学习曲线

过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。

避免过拟合的几种方法:

增加全部训练数据的数量(最为有效的方式)

使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂

正则化 (对目标函数后加上正则化项):使得这个"目标函数+正则化项"的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则化惩罚的强度,当λ=0时,意味着不使用正则化,反正λ越大,代表对参数的变大抑制作用越强。
两种正则化方法:

①L1正则化使得对判定为不需要的参数会直接让它变为0,即直接去除不要的变量

②L2正则化会抑制参数,使变量的影响不会过大。
欠拟合(underfitting):与过拟合状态相反,即过度不训练。

过拟合就是能很好拟合训练数据,对测试数据的拟合效果不好;欠拟合是既不能拟合训练数据,又不能拟合测试数据;所以要判断模型是过拟合还是欠拟合通过测试数据的精度数值观测是无法区分的。
那么怎么通过数值判断模型是过拟合还是欠拟合状态?

欠拟合:训练精度下降,测试精度上升

欠拟合图像特点:训练曲线和测试曲线最终趋于一个定值,这个定值明显大于1

过拟合:训练精度一直很高,测试精度上升

过拟合图像特点:训练曲线趋于一个定值a,测试曲线趋于一个定值b,a和b之间有一定且明显的差距

相关推荐
辰尘_星启2 小时前
【机器学习】反向传播如何求梯度(公式推导)
人工智能·深度学习·机器学习·强化学习·梯度下降·反向传播
我.佛.糍.粑3 小时前
Shusen Wang推荐系统学习 --召回 矩阵补充 双塔模型
人工智能·学习·机器学习·矩阵·推荐算法
苦瓜汤补钙3 小时前
论文阅读:WildGS-SLAM:Monocular Gaussian Splatting SLAM in Dynamic Environments
linux·论文阅读·机器学习
智算菩萨3 小时前
传统机器学习在信用卡交易预测中的卓越表现:从R²=-0.0075到1.0000的华丽转身
人工智能·机器学习·r语言
大连好光景5 小时前
L1正则化 VS L2正则化
人工智能·深度学习·机器学习
国家不保护废物5 小时前
深度学习
人工智能·深度学习·机器学习
今天炼丹了吗5 小时前
RTDETR融合[WACV 2025]SEM-Net中的模块
python·深度学习·机器学习
深度学习机器20 小时前
OCRFlux-3B:开源 OCR + LLM 模型的新标杆,支持跨页表格合并
人工智能·机器学习·语言模型·ocr
大千AI助手21 小时前
TinyBERT:知识蒸馏驱动的BERT压缩革命 | 模型小7倍、推理快9倍的轻量化引擎
人工智能·深度学习·机器学习·自然语言处理·bert·蒸馏·tinybert
Ao0000001 天前
脑电分析入门指南:信号处理、特征提取与机器学习
人工智能·机器学习·信号处理