机器学习——正则化、欠拟合、过拟合、学习曲线

过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。

避免过拟合的几种方法:

增加全部训练数据的数量(最为有效的方式)

使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂

正则化 (对目标函数后加上正则化项):使得这个"目标函数+正则化项"的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则化惩罚的强度,当λ=0时,意味着不使用正则化,反正λ越大,代表对参数的变大抑制作用越强。
两种正则化方法:

①L1正则化使得对判定为不需要的参数会直接让它变为0,即直接去除不要的变量

②L2正则化会抑制参数,使变量的影响不会过大。
欠拟合(underfitting):与过拟合状态相反,即过度不训练。

过拟合就是能很好拟合训练数据,对测试数据的拟合效果不好;欠拟合是既不能拟合训练数据,又不能拟合测试数据;所以要判断模型是过拟合还是欠拟合通过测试数据的精度数值观测是无法区分的。
那么怎么通过数值判断模型是过拟合还是欠拟合状态?

欠拟合:训练精度下降,测试精度上升

欠拟合图像特点:训练曲线和测试曲线最终趋于一个定值,这个定值明显大于1

过拟合:训练精度一直很高,测试精度上升

过拟合图像特点:训练曲线趋于一个定值a,测试曲线趋于一个定值b,a和b之间有一定且明显的差距

相关推荐
pps-key4 小时前
ai交易算力研究
大数据·jvm·人工智能·机器学习
2401_841495644 小时前
【机器学习】限制性玻尔兹曼机(RBM)
人工智能·python·深度学习·神经网络·机器学习·无监督学习·限制性玻尔兹曼机
WhereIsMyChair5 小时前
DPO 核心损失函数β调大可以控制不偏离ref模型太远
人工智能·算法·机器学习
DeepVis Research6 小时前
【Autonomous Driving/Sim】2026年度自动驾驶极端场景与车辆动力学仿真基准索引 (Benchmark Index)
人工智能·物联网·机器学习·自动驾驶·数据集
xixixi777776 小时前
SoC芯片本质——“系统级集成”
人工智能·机器学习·架构·pc·soc·集成·芯片
lisw056 小时前
工程软件化概述!
人工智能·科技·机器学习
纪伊路上盛名在9 小时前
矩阵微积分速通
深度学习·线性代数·机器学习·矩阵·微积分
权泽谦10 小时前
病灶变化预测 vs 分类:医学影像 AI 中更有价值的问题是什么?
人工智能·机器学习·ai·分类·数据挖掘
Stardep10 小时前
深度学习进阶:偏差方差分析与正则化策略全解析
人工智能·深度学习·dropout·正则化·过拟合·欠拟合·方差与偏差
过期的秋刀鱼!11 小时前
机器学习-逻辑回归的成本函数
人工智能·机器学习·逻辑回归