RTDETR融合[CVPR2025]ARConv中的自适应矩阵卷积


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《Adaptive Rectangular Convolution for Remote Sensing Pansharpening》

一、 模块介绍

论文链接: https://arxiv.org/pdf/2503.00467

代码链接: https://github.com/WangXueyang-uestc/ARConv

论文速览:

基于卷积神经网络 (CNN) 的遥感全色锐化技术的最新进展显著提高了图像质量。然而,这些方法中的传统卷积模块有两个关键的缺点。首先,卷积运算中的采样位置被限制在一个固定的方形窗口内。其次,采样点的数量是预设的,保持不变。鉴于遥感图像中的物体大小不同,这些刚性参数会导致次优特征提取。为了克服这些限制,我们引入了一个创新的卷积模块,即自适应矩形卷积 (ARConv)。ARConv 自适应地学习卷积核的高度和宽度,并根据学习到的尺度动态调整采样点的数量。这种方法使 ARConv 能够有效地捕获图像中各种对象的比例特定特征,从而优化内核大小和采样位置。此外,我们还提出了 ARNet,这是一种以 ARConv 为主要卷积模块的网络架构。对多个数据集的广泛评估揭示了我们的方法在增强全色锐化性能方面优于以前的技术。消融研究和可视化进一步证实了 ARConv 的疗效。

**总结:作者提出一种自适应矩阵卷积,一种卷积的变式。**​


二、二创融合模块

2.1 相关二创模块及所需参数

该模块无二创模块。

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 ".yaml"文件解读_yolo yaml文件-CSDN博客

打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, CCRI, [128, 5, True, False]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 1, ARConv, [256, 3]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, CCRI, [512, 3, True, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, CCRI, [1024, 3, True, False]]

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]] # cat Y4
  - [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 11], 1, Concat, [1]] # cat Y5
  - [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

2.2 修改train.py文件

创建Train_RT脚本用于训练。

复制代码
from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

在train.py脚本中填入修改好的yaml路径,运行即可训。


相关推荐
新德通科技17 分钟前
新德通科技:以创新驱动光通信一体化发展,赋能全球智能互联
人工智能
CoovallyAIHub17 分钟前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
深度学习·算法·计算机视觉
__星辰大海__17 分钟前
NeRF PyTorch 源码解读 - NDC空间
人工智能
Java学术趴18 分钟前
RNN指南:从梯度消失到LSTM魔改,一文说透RNN/LSTM/GRU的隐藏优势!
人工智能
coderCatIce29 分钟前
刘二大人第2讲-线性模型-带代码以及作业答案
人工智能·机器学习
帅夫帅夫30 分钟前
Vibe Coding从零开始教你打造一个WebLLM页面
前端·人工智能
抽风的雨61031 分钟前
【python深度学习】Day 45 Tensorboard使用介绍
人工智能·深度学习
红衣信38 分钟前
探索 DeepSeek:智能前端与大模型的碰撞
前端·人工智能·llm
姚瑞南43 分钟前
【Prompt实战】国际翻译小组
人工智能·prompt·gpt-3·文心一言·机器翻译
Jamence1 小时前
多模态大语言模型arxiv论文略读(109)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记