算法随笔_74: 不同路径_1

上一篇:算法随笔_73: 跳跃游戏-CSDN博客

=====

题目描述如下:

一个机器人位于一个 m x n网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 2

输出:3

解释:

从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下

  2. 向下 -> 向下 -> 向右

  3. 向下 -> 向右 -> 向下

=====

算法思路:

方法1:

我们可以使用动态规划解决此问题。我们设res(i, j)表示从左上角到达第i行j列的格子所用的路径数。那么递推关系如下:

res(i, j)=res(i, j-1)+res(i-1,j)

我们可以从左上角开始遍历网格,按行遍历。设res(0, 0)=1。

时间复杂度为O(mn)。下面是Python代码实现:

复制代码
class Solution(object):
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        res= [[0 for _ in range(n)] for _ in range(m)]
        
        for i in range(m):
            for j in range(n):
                if i==0 and j==0:
                    res[i][j]=1
                    continue
                fromL=res[i][j-1] if j>0 else 0
                fromT=res[i-1][j] if i>0 else 0
                res[i][j]=fromL+fromT
        return res[m-1][n-1]

方法2:

我们还可以通过组合数学方式通过计算得出。我们从左上角移动到右下角,向右走需要n-1步,向下走需要m-1步,总共需要走m+n-2步。那么我们需要从m+n-2里面找出n-1个数的全部组合数C(m+n-2, n-1)即为最终答案。

假如我们总共需要走10步。向右总共需要走2步。那在哪2步需要向右走呢?那就是从1至10这10个数里取2个数的全部方案C(10, 2)即为最终答案。

在Python 3里可以使用comb(m + n - 2, n - 1)直接计算得出。下面是Python代码实现:

复制代码
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        return comb(m + n - 2, n - 1)

关键词: 动态规划,组合数学

相关推荐
踩坑记录18 小时前
leetcode hot100 easy 101. 对称二叉树 递归 层序遍历 bfs
算法·leetcode·宽度优先
2501_9403152619 小时前
leetcode182动态口令(将字符的前几个元素放在字符串后面)
算法
老鼠只爱大米19 小时前
LeetCode经典算法面试题 #98:验证二叉搜索树(递归法、迭代法等五种实现方案详解)
算法·leetcode·二叉树·递归·二叉搜索树·迭代
共享家95271 天前
搭建 AI 聊天机器人:”我的人生我做主“
前端·javascript·css·python·pycharm·html·状态模式
疯狂的喵1 天前
C++编译期多态实现
开发语言·c++·算法
scx201310041 天前
20260129LCA总结
算法·深度优先·图论
2301_765703141 天前
C++中的协程编程
开发语言·c++·算法
m0_748708051 天前
实时数据压缩库
开发语言·c++·算法
小魏每天都学习1 天前
【算法——c/c++]
c语言·c++·算法
Hgfdsaqwr1 天前
Python在2024年的主要趋势与发展方向
jvm·数据库·python