要实现通过 API 将流式内容输出到前端,可以采用以下技术方案(以 Python 后端 + 前端 JavaScript 为例):
方案一:使用 Server-Sent Events (SSE)
这是浏览器原生支持的流式传输方案,推荐首选
python
# Flask 示例
from flask import Response, stream_with_context
@app.route('/stream')
def stream_data():
def generate():
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages,
stream=True
)
for chunk in response:
if chunk.choices:
content = chunk.choices[0].delta.content or ""
# SSE 格式要求 data: 前缀和双换行符
yield f"data: {json.dumps({'content': content})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
javascript
// 前端 JavaScript
const eventSource = new EventSource('/stream');
eventSource.onmessage = (event) => {
const data = JSON.parse(event.data);
document.getElementById('output').innerHTML += data.content;
};
eventSource.onerror = (err) => {
console.error('EventSource failed:', err);
eventSource.close();
};
方案二:使用流式 HTTP 响应(NDJSON)
更通用的流式传输方案,适合非浏览器客户端
python
# FastAPI 示例
from fastapi import APIRouter
from fastapi.responses import StreamingResponse
import json
@app.get("/stream")
async def stream_data():
async def generate():
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages,
stream=True
)
async for chunk in response:
if chunk.choices:
content = chunk.choices[0].delta.content or ""
yield json.dumps({"content": content}) + "\n" # NDJSON 格式
return StreamingResponse(generate(), media_type='application/x-ndjson')
javascript
// 前端 JavaScript 使用 Fetch API
async function streamData() {
const response = await fetch('/stream');
const reader = response.body.getReader();
const decoder = new TextDecoder();
while(true) {
const { done, value } = await reader.read();
if(done) break;
const chunk = decoder.decode(value);
const data = JSON.parse(chunk);
document.getElementById('output').innerHTML += data.content;
}
}
关键配置说明
-
响应头设置:
python# Flask headers = { 'Cache-Control': 'no-cache', 'Connection': 'keep-alive' } # FastAPI 自动处理
-
数据格式选择:
- SSE (
text/event-stream
):浏览器原生支持,自动重连 - NDJSON (
application/x-ndjson
):更通用的流式 JSON 格式 - 纯文本流:简单但结构化能力弱
- SSE (
-
前端处理建议:
javascript// 更健壮的读取方式(处理分块不完整情况) let buffer = ''; async function processChunk(chunk) { buffer += chunk; while(buffer.includes('\n')) { const lineEnd = buffer.indexOf('\n'); const line = buffer.slice(0, lineEnd); buffer = buffer.slice(lineEnd + 1); try { const data = JSON.parse(line); // 处理数据... } catch(e) { console.error('解析错误:', e); } } }
完整工作流程示例(FastAPI + React)
后端:
python
# main.py
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/chat")
async def chat_stream(prompt: str):
async def generate():
response = client.chat.completions.create(
model="deepseek-chat",
messages=[{"role": "user", "content": prompt}],
stream=True
)
async for chunk in response:
if content := chunk.choices[0].delta.content:
yield json.dumps({"content": content})
return StreamingResponse(generate(), media_type="application/x-ndjson")
前端 React 组件:
javascript
// ChatComponent.jsx
import { useState } from 'react';
export default function ChatComponent() {
const [output, setOutput] = useState('');
const startStream = async () => {
const response = await fetch('http://api/chat?prompt=你好');
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
while(true) {
const { done, value } = await reader.read();
if(done) break;
buffer += decoder.decode(value);
while(buffer.includes('}')) {
const endIndex = buffer.indexOf('}') + 1;
const chunk = buffer.slice(0, endIndex);
buffer = buffer.slice(endIndex);
try {
const data = JSON.parse(chunk);
setOutput(prev => prev + data.content);
} catch(e) {
console.error('解析错误:', e);
}
}
}
};
return (
<div>
<button onClick={startStream}>开始对话</button>
<div id="output">{output}</div>
</div>
);
}
注意事项
-
连接管理:
- 设置合理的超时时间(通常 30-60 秒)
- 处理客户端提前断开连接的情况
python# FastAPI 示例 try: async for chunk in response: # ...处理数据 if await request.is_disconnected(): break finally: await client.close() # 清理资源
-
性能优化:
- 使用异步框架(FastAPI 性能优于 Flask)
- 启用响应压缩
pythonapp = FastAPI() @app.middleware("http") async def add_compression(request, call_next): response = await call_next(request) response.headers["Content-Encoding"] = "gzip" return response
-
安全考虑:
- 限制最大并发连接数
- 实施速率限制
pythonfrom fastapi import Request from fastapi.middleware import Middleware from slowapi import Limiter from slowapi.util import get_remote_address limiter = Limiter(key_func=get_remote_address) app.state.limiter = limiter @app.get("/chat") @limiter.limit("10/minute") async def chat_stream(request: Request): # ...
-
错误处理增强:
pythonasync def generate(): try: response = client.chat.completions.create(...) async for chunk in response: # 处理数据... except Exception as e: yield json.dumps({"error": str(e)}) finally: await client.close() # 确保释放资源
这些方案可根据具体需求组合使用,建议优先选择 SSE 方案(浏览器兼容性好),需要支持更复杂场景时可考虑 WebSocket,但后者实现成本较高。