PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码

以下是一个使用 PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和 4 个工艺参数,根据这些输入生成相应的图片。

1. 导入必要的库

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt

# 检查是否有可用的 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 定义数据集类

python 复制代码
class ImagePairDataset(Dataset):
    def __init__(self, image_pairs, params):
        self.image_pairs = image_pairs
        self.params = params

    def __len__(self):
        return len(self.image_pairs)

    def __getitem__(self, idx):
        input_image, target_image = self.image_pairs[idx]
        param = self.params[idx]
        return input_image, target_image, param

3. 定义生成器和判别器

python 复制代码
# 生成器
class Generator(nn.Module):
    def __init__(self, z_dim=4, img_channels=3):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # 输入: [batch_size, z_dim + 4, 1, 1]
            self._block(z_dim + 4, 1024, 4, 1, 0),  # [batch_size, 1024, 4, 4]
            self._block(1024, 512, 4, 2, 1),  # [batch_size, 512, 8, 8]
            self._block(512, 256, 4, 2, 1),  # [batch_size, 256, 16, 16]
            self._block(256, 128, 4, 2, 1),  # [batch_size, 128, 32, 32]
            nn.ConvTranspose2d(128, img_channels, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True)
        )

    def forward(self, z, params):
        params = params.view(params.size(0), 4, 1, 1)
        x = torch.cat([z, params], dim=1)
        return self.gen(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self, img_channels=3):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # 输入: [batch_size, img_channels + 4, 64, 64]
            nn.Conv2d(img_channels + 4, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2),
            self._block(64, 128, 4, 2, 1),  # [batch_size, 128, 16, 16]
            self._block(128, 256, 4, 2, 1),  # [batch_size, 256, 8, 8]
            self._block(256, 512, 4, 2, 1),  # [batch_size, 512, 4, 4]
            nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=0),
            nn.Sigmoid()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2)
        )

    def forward(self, img, params):
        params = params.view(params.size(0), 4, 1, 1).repeat(1, 1, img.size(2), img.size(3))
        x = torch.cat([img, params], dim=1)
        return self.disc(x)

4. 训练代码

python 复制代码
def train_conditional_dcgan(image_pairs, params, batch_size=32, epochs=10, lr=0.0002, z_dim=4):
    dataset = ImagePairDataset(image_pairs, params)
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

    gen = Generator(z_dim).to(device)
    disc = Discriminator().to(device)

    criterion = nn.BCELoss()
    opt_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
    opt_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))

    for epoch in range(epochs):
        for i, (input_images, target_images, param) in enumerate(dataloader):
            input_images = input_images.to(device)
            target_images = target_images.to(device)
            param = param.to(device)

            # 训练判别器
            opt_disc.zero_grad()
            real_labels = torch.ones((target_images.size(0), 1, 1, 1)).to(device)
            fake_labels = torch.zeros((target_images.size(0), 1, 1, 1)).to(device)

            # 计算判别器对真实图像的损失
            real_output = disc(target_images, param)
            d_real_loss = criterion(real_output, real_labels)

            # 生成假图像
            z = torch.randn(target_images.size(0), z_dim, 1, 1).to(device)
            fake_images = gen(z, param)

            # 计算判别器对假图像的损失
            fake_output = disc(fake_images.detach(), param)
            d_fake_loss = criterion(fake_output, fake_labels)

            # 总判别器损失
            d_loss = d_real_loss + d_fake_loss
            d_loss.backward()
            opt_disc.step()

            # 训练生成器
            opt_gen.zero_grad()
            output = disc(fake_images, param)
            g_loss = criterion(output, real_labels)
            g_loss.backward()
            opt_gen.step()

        print(f'Epoch [{epoch+1}/{epochs}] D_loss: {d_loss.item():.4f} G_loss: {g_loss.item():.4f}')

    return gen

5. 可视化代码

python 复制代码
def visualize_generated_images(gen, input_images, params, z_dim=4):
    input_images = input_images.to(device)
    params = params.to(device)
    z = torch.randn(input_images.size(0), z_dim, 1, 1).to(device)
    fake_images = gen(z, params).cpu().detach()

    fig, axes = plt.subplots(1, input_images.size(0), figsize=(15, 3))
    for i in range(input_images.size(0)):
        img = fake_images[i].permute(1, 2, 0).numpy()
        img = (img + 1) / 2  # 从 [-1, 1] 转换到 [0, 1]
        axes[i].imshow(img)
        axes[i].axis('off')
    plt.show()

6. 示例使用

python 复制代码
# 假设 image_pairs 是一个包含图像对的列表,params 是一个包含 4 个工艺参数的列表
image_pairs = []  # 这里需要替换为实际的图像对数据
params = []  # 这里需要替换为实际的工艺参数数据

# 训练模型
gen = train_conditional_dcgan(image_pairs, params)

# 可视化生成的图像
test_input_images, test_target_images, test_params = image_pairs[:5], image_pairs[:5], params[:5]
test_input_images = torch.stack([torch.tensor(img) for img in test_input_images]).float()
test_params = torch.tensor(test_params).float()
visualize_generated_images(gen, test_input_images, test_params)

代码说明

  1. 数据集类ImagePairDataset 用于加载图像对和工艺参数。
  2. 生成器和判别器GeneratorDiscriminator 分别定义了生成器和判别器的网络结构。
  3. 训练代码train_conditional_dcgan 函数用于训练 Conditional DCGAN 模型。
  4. 可视化代码visualize_generated_images 函数用于可视化生成的图像。
  5. 示例使用:最后部分展示了如何使用上述函数进行训练和可视化。

请注意,你需要将 image_pairsparams 替换为实际的数据集。此外,代码中的超参数(如 batch_sizeepochslr 等)可以根据实际情况进行调整。

相关推荐
爱分享的飘哥25 分钟前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
阿里云大数据AI技术40 分钟前
PAIFuser:面向图像视频的训练推理加速框架
人工智能·机器学习
盛世隐者42 分钟前
【深度学习】pytorch深度学习框架的环境配置
人工智能·pytorch·深度学习
说私域44 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化策略研究
人工智能·小程序
funfan05171 小时前
GPT-5博士级AI使用教程及国内平替方案
人工智能·gpt
萤丰信息1 小时前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地
AI视觉网奇2 小时前
音频分类模型笔记
人工智能·python·深度学习
Dante但丁2 小时前
手扒Github项目文档级知识图谱构建框架RAKG(保姆级)Day4
人工智能
用户5191495848452 小时前
使用JavaScript与CSS创建"移动高亮"导航栏
人工智能·aigc
Java中文社群2 小时前
淘宝首位程序员离职,竟投身AI新公司做这事!
人工智能·后端·程序员