PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码

以下是一个使用 PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和 4 个工艺参数,根据这些输入生成相应的图片。

1. 导入必要的库

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt

# 检查是否有可用的 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 定义数据集类

python 复制代码
class ImagePairDataset(Dataset):
    def __init__(self, image_pairs, params):
        self.image_pairs = image_pairs
        self.params = params

    def __len__(self):
        return len(self.image_pairs)

    def __getitem__(self, idx):
        input_image, target_image = self.image_pairs[idx]
        param = self.params[idx]
        return input_image, target_image, param

3. 定义生成器和判别器

python 复制代码
# 生成器
class Generator(nn.Module):
    def __init__(self, z_dim=4, img_channels=3):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # 输入: [batch_size, z_dim + 4, 1, 1]
            self._block(z_dim + 4, 1024, 4, 1, 0),  # [batch_size, 1024, 4, 4]
            self._block(1024, 512, 4, 2, 1),  # [batch_size, 512, 8, 8]
            self._block(512, 256, 4, 2, 1),  # [batch_size, 256, 16, 16]
            self._block(256, 128, 4, 2, 1),  # [batch_size, 128, 32, 32]
            nn.ConvTranspose2d(128, img_channels, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True)
        )

    def forward(self, z, params):
        params = params.view(params.size(0), 4, 1, 1)
        x = torch.cat([z, params], dim=1)
        return self.gen(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self, img_channels=3):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # 输入: [batch_size, img_channels + 4, 64, 64]
            nn.Conv2d(img_channels + 4, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2),
            self._block(64, 128, 4, 2, 1),  # [batch_size, 128, 16, 16]
            self._block(128, 256, 4, 2, 1),  # [batch_size, 256, 8, 8]
            self._block(256, 512, 4, 2, 1),  # [batch_size, 512, 4, 4]
            nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=0),
            nn.Sigmoid()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2)
        )

    def forward(self, img, params):
        params = params.view(params.size(0), 4, 1, 1).repeat(1, 1, img.size(2), img.size(3))
        x = torch.cat([img, params], dim=1)
        return self.disc(x)

4. 训练代码

python 复制代码
def train_conditional_dcgan(image_pairs, params, batch_size=32, epochs=10, lr=0.0002, z_dim=4):
    dataset = ImagePairDataset(image_pairs, params)
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

    gen = Generator(z_dim).to(device)
    disc = Discriminator().to(device)

    criterion = nn.BCELoss()
    opt_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
    opt_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))

    for epoch in range(epochs):
        for i, (input_images, target_images, param) in enumerate(dataloader):
            input_images = input_images.to(device)
            target_images = target_images.to(device)
            param = param.to(device)

            # 训练判别器
            opt_disc.zero_grad()
            real_labels = torch.ones((target_images.size(0), 1, 1, 1)).to(device)
            fake_labels = torch.zeros((target_images.size(0), 1, 1, 1)).to(device)

            # 计算判别器对真实图像的损失
            real_output = disc(target_images, param)
            d_real_loss = criterion(real_output, real_labels)

            # 生成假图像
            z = torch.randn(target_images.size(0), z_dim, 1, 1).to(device)
            fake_images = gen(z, param)

            # 计算判别器对假图像的损失
            fake_output = disc(fake_images.detach(), param)
            d_fake_loss = criterion(fake_output, fake_labels)

            # 总判别器损失
            d_loss = d_real_loss + d_fake_loss
            d_loss.backward()
            opt_disc.step()

            # 训练生成器
            opt_gen.zero_grad()
            output = disc(fake_images, param)
            g_loss = criterion(output, real_labels)
            g_loss.backward()
            opt_gen.step()

        print(f'Epoch [{epoch+1}/{epochs}] D_loss: {d_loss.item():.4f} G_loss: {g_loss.item():.4f}')

    return gen

5. 可视化代码

python 复制代码
def visualize_generated_images(gen, input_images, params, z_dim=4):
    input_images = input_images.to(device)
    params = params.to(device)
    z = torch.randn(input_images.size(0), z_dim, 1, 1).to(device)
    fake_images = gen(z, params).cpu().detach()

    fig, axes = plt.subplots(1, input_images.size(0), figsize=(15, 3))
    for i in range(input_images.size(0)):
        img = fake_images[i].permute(1, 2, 0).numpy()
        img = (img + 1) / 2  # 从 [-1, 1] 转换到 [0, 1]
        axes[i].imshow(img)
        axes[i].axis('off')
    plt.show()

6. 示例使用

python 复制代码
# 假设 image_pairs 是一个包含图像对的列表,params 是一个包含 4 个工艺参数的列表
image_pairs = []  # 这里需要替换为实际的图像对数据
params = []  # 这里需要替换为实际的工艺参数数据

# 训练模型
gen = train_conditional_dcgan(image_pairs, params)

# 可视化生成的图像
test_input_images, test_target_images, test_params = image_pairs[:5], image_pairs[:5], params[:5]
test_input_images = torch.stack([torch.tensor(img) for img in test_input_images]).float()
test_params = torch.tensor(test_params).float()
visualize_generated_images(gen, test_input_images, test_params)

代码说明

  1. 数据集类ImagePairDataset 用于加载图像对和工艺参数。
  2. 生成器和判别器GeneratorDiscriminator 分别定义了生成器和判别器的网络结构。
  3. 训练代码train_conditional_dcgan 函数用于训练 Conditional DCGAN 模型。
  4. 可视化代码visualize_generated_images 函数用于可视化生成的图像。
  5. 示例使用:最后部分展示了如何使用上述函数进行训练和可视化。

请注意,你需要将 image_pairsparams 替换为实际的数据集。此外,代码中的超参数(如 batch_sizeepochslr 等)可以根据实际情况进行调整。

相关推荐
newxtc20 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen20 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室21 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖1 天前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树1 天前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白1 天前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场1 天前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链1 天前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu1 天前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域1 天前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源