PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码

以下是一个使用 PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和 4 个工艺参数,根据这些输入生成相应的图片。

1. 导入必要的库

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt

# 检查是否有可用的 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 定义数据集类

python 复制代码
class ImagePairDataset(Dataset):
    def __init__(self, image_pairs, params):
        self.image_pairs = image_pairs
        self.params = params

    def __len__(self):
        return len(self.image_pairs)

    def __getitem__(self, idx):
        input_image, target_image = self.image_pairs[idx]
        param = self.params[idx]
        return input_image, target_image, param

3. 定义生成器和判别器

python 复制代码
# 生成器
class Generator(nn.Module):
    def __init__(self, z_dim=4, img_channels=3):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # 输入: [batch_size, z_dim + 4, 1, 1]
            self._block(z_dim + 4, 1024, 4, 1, 0),  # [batch_size, 1024, 4, 4]
            self._block(1024, 512, 4, 2, 1),  # [batch_size, 512, 8, 8]
            self._block(512, 256, 4, 2, 1),  # [batch_size, 256, 16, 16]
            self._block(256, 128, 4, 2, 1),  # [batch_size, 128, 32, 32]
            nn.ConvTranspose2d(128, img_channels, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True)
        )

    def forward(self, z, params):
        params = params.view(params.size(0), 4, 1, 1)
        x = torch.cat([z, params], dim=1)
        return self.gen(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self, img_channels=3):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # 输入: [batch_size, img_channels + 4, 64, 64]
            nn.Conv2d(img_channels + 4, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2),
            self._block(64, 128, 4, 2, 1),  # [batch_size, 128, 16, 16]
            self._block(128, 256, 4, 2, 1),  # [batch_size, 256, 8, 8]
            self._block(256, 512, 4, 2, 1),  # [batch_size, 512, 4, 4]
            nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=0),
            nn.Sigmoid()
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels, kernel_size, stride, padding, bias=False
            ),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2)
        )

    def forward(self, img, params):
        params = params.view(params.size(0), 4, 1, 1).repeat(1, 1, img.size(2), img.size(3))
        x = torch.cat([img, params], dim=1)
        return self.disc(x)

4. 训练代码

python 复制代码
def train_conditional_dcgan(image_pairs, params, batch_size=32, epochs=10, lr=0.0002, z_dim=4):
    dataset = ImagePairDataset(image_pairs, params)
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

    gen = Generator(z_dim).to(device)
    disc = Discriminator().to(device)

    criterion = nn.BCELoss()
    opt_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
    opt_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))

    for epoch in range(epochs):
        for i, (input_images, target_images, param) in enumerate(dataloader):
            input_images = input_images.to(device)
            target_images = target_images.to(device)
            param = param.to(device)

            # 训练判别器
            opt_disc.zero_grad()
            real_labels = torch.ones((target_images.size(0), 1, 1, 1)).to(device)
            fake_labels = torch.zeros((target_images.size(0), 1, 1, 1)).to(device)

            # 计算判别器对真实图像的损失
            real_output = disc(target_images, param)
            d_real_loss = criterion(real_output, real_labels)

            # 生成假图像
            z = torch.randn(target_images.size(0), z_dim, 1, 1).to(device)
            fake_images = gen(z, param)

            # 计算判别器对假图像的损失
            fake_output = disc(fake_images.detach(), param)
            d_fake_loss = criterion(fake_output, fake_labels)

            # 总判别器损失
            d_loss = d_real_loss + d_fake_loss
            d_loss.backward()
            opt_disc.step()

            # 训练生成器
            opt_gen.zero_grad()
            output = disc(fake_images, param)
            g_loss = criterion(output, real_labels)
            g_loss.backward()
            opt_gen.step()

        print(f'Epoch [{epoch+1}/{epochs}] D_loss: {d_loss.item():.4f} G_loss: {g_loss.item():.4f}')

    return gen

5. 可视化代码

python 复制代码
def visualize_generated_images(gen, input_images, params, z_dim=4):
    input_images = input_images.to(device)
    params = params.to(device)
    z = torch.randn(input_images.size(0), z_dim, 1, 1).to(device)
    fake_images = gen(z, params).cpu().detach()

    fig, axes = plt.subplots(1, input_images.size(0), figsize=(15, 3))
    for i in range(input_images.size(0)):
        img = fake_images[i].permute(1, 2, 0).numpy()
        img = (img + 1) / 2  # 从 [-1, 1] 转换到 [0, 1]
        axes[i].imshow(img)
        axes[i].axis('off')
    plt.show()

6. 示例使用

python 复制代码
# 假设 image_pairs 是一个包含图像对的列表,params 是一个包含 4 个工艺参数的列表
image_pairs = []  # 这里需要替换为实际的图像对数据
params = []  # 这里需要替换为实际的工艺参数数据

# 训练模型
gen = train_conditional_dcgan(image_pairs, params)

# 可视化生成的图像
test_input_images, test_target_images, test_params = image_pairs[:5], image_pairs[:5], params[:5]
test_input_images = torch.stack([torch.tensor(img) for img in test_input_images]).float()
test_params = torch.tensor(test_params).float()
visualize_generated_images(gen, test_input_images, test_params)

代码说明

  1. 数据集类ImagePairDataset 用于加载图像对和工艺参数。
  2. 生成器和判别器GeneratorDiscriminator 分别定义了生成器和判别器的网络结构。
  3. 训练代码train_conditional_dcgan 函数用于训练 Conditional DCGAN 模型。
  4. 可视化代码visualize_generated_images 函数用于可视化生成的图像。
  5. 示例使用:最后部分展示了如何使用上述函数进行训练和可视化。

请注意,你需要将 image_pairsparams 替换为实际的数据集。此外,代码中的超参数(如 batch_sizeepochslr 等)可以根据实际情况进行调整。

相关推荐
阿杰学AI1 分钟前
AI核心知识71——大语言模型之Prompt Caching (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·prompt caching·提示词缓存
人工智能AI技术5 分钟前
【Agent从入门到实践】46 自动化工具集成:结合Jenkins、GitLab CI,实现研发流程自动化
人工智能·python
esmap5 分钟前
技术深析:ESMAP智慧医院解决方案——基于AOA蓝牙定位的全场景精准感知实现
大数据·网络·人工智能
Blossom.1186 分钟前
把大模型当“编译器”用:一句自然语言直接生成SoC的Verilog
数据库·人工智能·python·sql·单片机·嵌入式硬件·fpga开发
Gogo8169 分钟前
深度解析 GitHub Copilot Agent Skills:如何打造可跨项目的 AI 专属“工具箱”
人工智能·github·copilot
Chef_Chen10 分钟前
数据科学每日总结--Day50--机器学习
人工智能·机器学习·支持向量机
火山引擎开发者社区11 分钟前
来火山引擎部署Moltbot,9.9元打造私人AI助手
人工智能·火山引擎
一休哥助手2 小时前
2026年1月29日人工智能早间新闻
人工智能
企业老板ai培训3 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
Elastic 中国社区官方博客9 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索