以下是一个使用 PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和 4 个工艺参数,根据这些输入生成相应的图片。
1. 导入必要的库
python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt
# 检查是否有可用的 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2. 定义数据集类
python
class ImagePairDataset(Dataset):
def __init__(self, image_pairs, params):
self.image_pairs = image_pairs
self.params = params
def __len__(self):
return len(self.image_pairs)
def __getitem__(self, idx):
input_image, target_image = self.image_pairs[idx]
param = self.params[idx]
return input_image, target_image, param
3. 定义生成器和判别器
python
# 生成器
class Generator(nn.Module):
def __init__(self, z_dim=4, img_channels=3):
super(Generator, self).__init__()
self.gen = nn.Sequential(
# 输入: [batch_size, z_dim + 4, 1, 1]
self._block(z_dim + 4, 1024, 4, 1, 0), # [batch_size, 1024, 4, 4]
self._block(1024, 512, 4, 2, 1), # [batch_size, 512, 8, 8]
self._block(512, 256, 4, 2, 1), # [batch_size, 256, 16, 16]
self._block(256, 128, 4, 2, 1), # [batch_size, 128, 32, 32]
nn.ConvTranspose2d(128, img_channels, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def _block(self, in_channels, out_channels, kernel_size, stride, padding):
return nn.Sequential(
nn.ConvTranspose2d(
in_channels, out_channels, kernel_size, stride, padding, bias=False
),
nn.BatchNorm2d(out_channels),
nn.ReLU(True)
)
def forward(self, z, params):
params = params.view(params.size(0), 4, 1, 1)
x = torch.cat([z, params], dim=1)
return self.gen(x)
# 判别器
class Discriminator(nn.Module):
def __init__(self, img_channels=3):
super(Discriminator, self).__init__()
self.disc = nn.Sequential(
# 输入: [batch_size, img_channels + 4, 64, 64]
nn.Conv2d(img_channels + 4, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2),
self._block(64, 128, 4, 2, 1), # [batch_size, 128, 16, 16]
self._block(128, 256, 4, 2, 1), # [batch_size, 256, 8, 8]
self._block(256, 512, 4, 2, 1), # [batch_size, 512, 4, 4]
nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=0),
nn.Sigmoid()
)
def _block(self, in_channels, out_channels, kernel_size, stride, padding):
return nn.Sequential(
nn.Conv2d(
in_channels, out_channels, kernel_size, stride, padding, bias=False
),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2)
)
def forward(self, img, params):
params = params.view(params.size(0), 4, 1, 1).repeat(1, 1, img.size(2), img.size(3))
x = torch.cat([img, params], dim=1)
return self.disc(x)
4. 训练代码
python
def train_conditional_dcgan(image_pairs, params, batch_size=32, epochs=10, lr=0.0002, z_dim=4):
dataset = ImagePairDataset(image_pairs, params)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
gen = Generator(z_dim).to(device)
disc = Discriminator().to(device)
criterion = nn.BCELoss()
opt_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))
for epoch in range(epochs):
for i, (input_images, target_images, param) in enumerate(dataloader):
input_images = input_images.to(device)
target_images = target_images.to(device)
param = param.to(device)
# 训练判别器
opt_disc.zero_grad()
real_labels = torch.ones((target_images.size(0), 1, 1, 1)).to(device)
fake_labels = torch.zeros((target_images.size(0), 1, 1, 1)).to(device)
# 计算判别器对真实图像的损失
real_output = disc(target_images, param)
d_real_loss = criterion(real_output, real_labels)
# 生成假图像
z = torch.randn(target_images.size(0), z_dim, 1, 1).to(device)
fake_images = gen(z, param)
# 计算判别器对假图像的损失
fake_output = disc(fake_images.detach(), param)
d_fake_loss = criterion(fake_output, fake_labels)
# 总判别器损失
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
opt_disc.step()
# 训练生成器
opt_gen.zero_grad()
output = disc(fake_images, param)
g_loss = criterion(output, real_labels)
g_loss.backward()
opt_gen.step()
print(f'Epoch [{epoch+1}/{epochs}] D_loss: {d_loss.item():.4f} G_loss: {g_loss.item():.4f}')
return gen
5. 可视化代码
python
def visualize_generated_images(gen, input_images, params, z_dim=4):
input_images = input_images.to(device)
params = params.to(device)
z = torch.randn(input_images.size(0), z_dim, 1, 1).to(device)
fake_images = gen(z, params).cpu().detach()
fig, axes = plt.subplots(1, input_images.size(0), figsize=(15, 3))
for i in range(input_images.size(0)):
img = fake_images[i].permute(1, 2, 0).numpy()
img = (img + 1) / 2 # 从 [-1, 1] 转换到 [0, 1]
axes[i].imshow(img)
axes[i].axis('off')
plt.show()
6. 示例使用
python
# 假设 image_pairs 是一个包含图像对的列表,params 是一个包含 4 个工艺参数的列表
image_pairs = [] # 这里需要替换为实际的图像对数据
params = [] # 这里需要替换为实际的工艺参数数据
# 训练模型
gen = train_conditional_dcgan(image_pairs, params)
# 可视化生成的图像
test_input_images, test_target_images, test_params = image_pairs[:5], image_pairs[:5], params[:5]
test_input_images = torch.stack([torch.tensor(img) for img in test_input_images]).float()
test_params = torch.tensor(test_params).float()
visualize_generated_images(gen, test_input_images, test_params)
代码说明
- 数据集类 :
ImagePairDataset
用于加载图像对和工艺参数。 - 生成器和判别器 :
Generator
和Discriminator
分别定义了生成器和判别器的网络结构。 - 训练代码 :
train_conditional_dcgan
函数用于训练 Conditional DCGAN 模型。 - 可视化代码 :
visualize_generated_images
函数用于可视化生成的图像。 - 示例使用:最后部分展示了如何使用上述函数进行训练和可视化。
请注意,你需要将 image_pairs
和 params
替换为实际的数据集。此外,代码中的超参数(如 batch_size
、epochs
、lr
等)可以根据实际情况进行调整。