Neo4j 图数据库教程

一、基础概念

1.1 什么是 Neo4j

Neo4j 是一款开源的高性能 NoSQL 图数据库,采用原生图数据存储方式,使用 Scala 和 Java 语言开发。它遵循属性图模型,提供专属的 Cypher 查询语言,擅长处理复杂的关系数据,广泛应用于社交网络、推荐系统、知识图谱等领域。1.2 核心组件

*节点(Node :表示图数据库中的实体,可包含多个属性和标签。

关系(Relationship:用于连接两个节点,是有方向性的,也可包含属性。

属性(Property:是键值对,用于描述节点和关系。

标签(Label:用于将节点分组,便于管理和查询。

二、环境搭建

2.1 安装方式

Neo4j Enterprise Server(企业版):功能强大,适合企业级应用。

Neo4j Community Server(社区版):免费开源,功能较为全面(建议安装)。

Neo4j Desktop(桌面版)** :集成 neo4j 数据库程序与浏览器,使用方便。

2.2 安装步骤

  1. 安装 JDK :Neo4j 需要 JDK 支持,如 neo4j 4.3.6 版本需要 JDK 11 及以上版本。

  2. 下载 Neo4j :从官网(<https://neo4j.com/download-center/\>)选择适合的版本下载。

  3. 配置环境变量:添加 NEO4J_HOME 系统变量,将 %NEO4J_HOME%\bin 添加到 path 变量中。

  4. 启动服务:在命令行中输入 neo4j.bat install-service 安装服务,再输入 neo4j.bat start 启动服务。

  5. 访问浏览器界面:打开浏览器,访问 [http://localhost:7474](http://localhost:7474),使用默认用户名和密码(neo4j)登录。

三、数据操作

3.1 创建数据

创建节点:使用 CREATE 语句,如 `CREATE (n:Person {name:'Alice', age:25});` 。

创建关系:如 `CREATE (n)-[:KNOWS {since:2020}]->(m);` ,其中 `n` 和 `m` 是已存在的节点。

3.2 查询数据

查询所有节点 :`MATCH (n) RETURN n LIMIT 25;` 。

查询特定标签的节点 :`MATCH (n:Person) RETURN n;` 。

*查询节点的关系 :`MATCH (n)-[r]->(m) RETURN r;` 。

3.3 更新数据

更新节点属性 :`MATCH (n:Person {name:'Alice'}) SET n.age = 26;` 。

*更新关系属性:`MATCH ()-[r:KNOWS {since:2020}]->() SET r.since = 2019;` 。

3.4 删除数据

删除节点 :`MATCH (n:Person {name:'Alice'}) DETACH DELETE n;` ,先删除节点的所有关系,再删除节点本身。

删除关系:`MATCH ()-[r:KNOWS]->() DELETE r;` 。

四、高级应用

4.1 索引与约束

创建索引 :`CREATE INDEX FOR (n:Person) ON (n.name);` ,可加速基于该属性的查询。

创建唯一约束 :`CREATE CONSTRAINT FOR (n:Person) REQUIRE n.id IS UNIQUE;` 。

4.2 数据库管理

备份数据库 :使用 `neo4j-admin dump --database=graph.db --to=backup_path` 命令。

恢复数据库 :使用 `neo4j-admin load --from=backup_path --database=graph.db` 命令。

4.3 性能优化

查询性能优化:在 Neo4j 浏览器中使用 `EXPLAIN` 或 `PROFILE` 关键字查看查询执行计划和性能信息。

*配置缓存大小 :修改 Neo4j 的配置文件 `neo4j.conf` 中的 `dbms.memory.pagecache.size` 参数。

4.4 集成开发

Java API:Neo4j 提供 Java API,可在 Java 程序中直接调用,实现图数据库的功能。

其他语言的 Driver API :支持多种编程语言的 Driver API,如 Python、JavaScript 等,方便不同语言的开发者进行集成开发。

相关推荐
金井PRATHAMA1 小时前
框架系统的多维赋能——论其对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
金井PRATHAMA14 小时前
语义网络对人工智能自然语言处理中深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
金井PRATHAMA2 天前
框架系统在自然语言处理深度语义分析中的作用、挑战与未来展望
人工智能·自然语言处理·知识图谱
金井PRATHAMA3 天前
产生式规则对人工智能中自然语言处理深层语义分析的影响与启示研究
人工智能·自然语言处理·知识图谱
金井PRATHAMA3 天前
语义网络(Semantic Net)对人工智能中自然语言处理的深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
金井PRATHAMA3 天前
逻辑的回归——一阶谓词逻辑及其变体在自然语言处理深层语义分析中的作用与前瞻
人工智能·机器学习·自然语言处理·数据挖掘·回归·知识图谱
金井PRATHAMA3 天前
产生式规则在自然语言处理深层语义分析中的演变、影响与未来启示
人工智能·自然语言处理·知识图谱
好开心啊没烦恼3 天前
图数据库:基于历史学科的全球历史知识图谱构建,使用Neo4j图数据库实现中国历史与全球历史的关联查询。
大数据·数据库·python·数据挖掘·数据分析·知识图谱·neo4j
金井PRATHAMA4 天前
产生式规则对自然语言处理深层语义分析的影响与启示研究
人工智能·自然语言处理·知识图谱
星川皆无恙4 天前
知识图谱之深度学习:基于 BERT+LSTM+CRF 驱动深度学习识别模型医疗知识图谱问答可视化分析系统
大数据·人工智能·深度学习·bert·知识图谱