10、基于osg引擎生成热力图高度图实现3D热力图可视化、3D热力图实时更新(带过渡效果)

1、结果

2、完整C++代码

c 复制代码
#include <sstream>
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include <cmath>
#include <functional>
#include <osgViewer/viewer>
#include <osgDB/ReadFile>
#include <osg/Texture3D>
#include <osg/Texture1D>
#include <osgDB/FileUtils>
#include <osg/Billboard>
#include <osg/TexGenNode>
#include <osg/ClipNode>
#include <osgDB/WriteFile>
#include <osg/Point>
#include <osg/ShapeDrawable>
#include <osg/PositionAttitudeTransform>
#include <osg/MatrixTransform>
#include <osgGA/TrackballManipulator>
#include <osg/ComputeBoundsVisitor>
#include <osg/TransferFunction>
#include <array>
#include <osgViewer/ViewerEventHandlers>
#include <osgGA/StateSetManipulator>
#include <osgUtil/SmoothingVisitor>
const std::string DATA_PATH = R"(..\data\)";
const std::string SHADER_PATH = R"(..\shaders\)";
const float RADIUS = 35;//设置热力点的影响半径
struct Point { int x, y; float value; };
// 生成随机数
int getRandomInt(int min, int max) {
    return min + std::rand() % (max - min + 1);
}

// 颜色插值(用于热力图渐变)
osg::Vec4 lerpColor(float value) {
    value = osg::clampBetween(value, 0.0f, 1.0f);  // 确保 value 在 [0, 1] 范围内

    osg::Vec4 colors[] = {
        osg::Vec4(49/255.0, 54/255.0, 149/255.0, value),
        osg::Vec4(69/255.0, 117/255.0, 180/255.0, value),
        osg::Vec4(116/255.0, 173/255.0, 209/255.0, value),
        osg::Vec4(171/255.0, 217/255.0, 233/255.0, value),
        osg::Vec4(224/255.0, 243/255.0, 248/255.0, value),
        osg::Vec4(255/255.0, 255/255.0, 191/255.0, value),
        osg::Vec4(254/255.0, 224/255.0, 144/255.0, value),
        osg::Vec4(253/255.0, 174/255.0, 97/255.0, value),
        osg::Vec4(244/255.0, 109/255.0, 67/255.0, value),
        osg::Vec4(215/255.0, 48/255.0, 39/255.0, value),
        osg::Vec4(165/255.0, 0.0, 38/255.0, value)
    };


    //osg::Vec4 colors[] = {
    //    osg::Vec4(50 / 255.0, 136 / 255.0, 189 / 255.0, value),   
    //    osg::Vec4(102 / 255.0, 194 / 255.0, 165 / 255.0, value),
    //    osg::Vec4(171 / 255.0, 221 / 255.0, 164 / 255.0, value),
    //    osg::Vec4(230 / 255.0, 245 / 255.0, 152 / 255.0, value),
    //    osg::Vec4(254 / 255.0, 224 / 255.0, 139 / 255.0, value),
    //    osg::Vec4(253 / 255.0, 174 / 255.0, 97 / 255.0, value),
    //    osg::Vec4(244 / 255.0, 109 / 255.0, 67 / 255.0, value),
    //    osg::Vec4(213 / 255.0, 62 / 255.0, 79 / 255.0, value),
    //};

    int numColors = sizeof(colors) / sizeof(colors[0]);

    float t = value * (numColors - 1);      // 乘以 (数量-1)
    int index = static_cast<int>(t);

    // 处理边界情况,避免越界
    if (index >= numColors - 1) {
        return colors[numColors - 1];       // 直接返回最后一个颜色
    }
    t -= index;// 提取 t 的小数部分,作为插值比例

    return colors[index] * (1 - t) + colors[index + 1] * t;
}

std::vector<Point> generateData(int width, int height, int pointCount)
{
    std::vector<Point> points;
    for (int i = 0; i < pointCount; ++i) {
        points.push_back({ getRandomInt(10, width - 10), getRandomInt(10, height - 10), getRandomInt(0, 100) / 100.0f });
    }
    return points;
}

// 生成热力图图像
osg::ref_ptr<osg::Image> generateHeatmap(int width, int height, std::vector<Point> points) {
    osg::ref_ptr<osg::Image> image = new osg::Image();
    image->allocateImage(width, height, 1, GL_RGBA, GL_UNSIGNED_BYTE);

    std::vector<unsigned char> buffer(width * height * 4, 0); // 初始化RGBA缓冲区

    // 绘制点 (模拟圆形模糊)
    for (const auto& p : points) {
        for (int dx = -RADIUS; dx <= RADIUS; ++dx) {
            for (int dy = -RADIUS; dy <= RADIUS; ++dy) {
                int px = p.x + dx;//计算当前像素的x坐标
                int py = p.y + dy;//计算当前像素的y坐标

                //确保当前像素点在图像范围内
                if (px >= 0 && px < width && py >= 0 && py < height) {
                    //计算该像素点与中心点的归一化距离
                    float dist = std::sqrt(dx * dx + dy * dy) / RADIUS;
                    //如果距离在热力点影响范围内
                    if (dist <= 1.0f) {
                        //计算当前像素在缓冲区中的索引
                        int index = (py * width + px) * 4;
                        //计算当前像素的影响强度
                        float intensity = (1.0f - dist) * p.value;
                        //叠加透明度
                        float oldAlpha = buffer[index + 3] / 255.0f; // 读取背景透明度(归一化到0~1)
                        float newAlpha = intensity + oldAlpha * (1.0f - intensity); // 计算混合透明度
                        buffer[index + 3] = static_cast<int>(std::min(255.0f, newAlpha * 255)); // 更新透明度
                    }
                }
            }
        }
    }

    // 颜色映射
    for (int i = 0; i < width * height; ++i) {
        float alpha = buffer[i * 4 + 3] / 255.0f; // 归一化透明度
        osg::Vec4 color = lerpColor(alpha);
        buffer[i * 4] = static_cast<unsigned char>(color.r() * 255);
        buffer[i * 4 + 1] = static_cast<unsigned char>(color.g() * 255);
        buffer[i * 4 + 2] = static_cast<unsigned char>(color.b() * 255);
        buffer[i * 4 + 3] = static_cast<unsigned char>(color.a() * 255);
    }

    // 复制数据到 osg::Image
    memcpy(image->data(), buffer.data(), buffer.size());
    return image;
}

// 生成高度图
osg::ref_ptr<osg::Image> generateHeightmap(int width, int height, std::vector<Point> points)
{
    osg::ref_ptr<osg::Image> image = new osg::Image;
    image->allocateImage(width, height, 1, GL_LUMINANCE, GL_UNSIGNED_BYTE);

    std::vector<float> heightBuffer(width * height, 0.0);//浮点型高度缓存

    // 计算高度影响(使用高斯衰减)
    for (const auto& p : points)
    {
        for (int dx = -RADIUS; dx <= RADIUS; ++dx) {
            for (int dy = -RADIUS; dy <= RADIUS; ++dy) {
                int px = p.x + dx;
                int py = p.y + dy;
                if (px >= 0 && px < width && py >= 0 && py < height)
                {
                    float distance = std::sqrt(dx * dx + dy * dy);
                    if (distance <= RADIUS) {
                        float normalizedDist = distance / RADIUS;
                        //高斯衰减系数
                        float falloff = std::exp(-normalizedDist * normalizedDist * 4.0f);
                        int index = py * width + px;
                        heightBuffer[index] += falloff * p.value;
                    }
                }
            }
        }
    }

    // 归一化处理
    float maxHeight = *std::max_element(heightBuffer.begin(), heightBuffer.end());
    std::vector<unsigned char> grayBuffer(width * height);
    for (int i = 0; i < width * height; ++i)
    {
        float normalized = heightBuffer[i] / maxHeight;
        grayBuffer[i] = static_cast<unsigned char>(normalized * 255);
    }
    memcpy(image->data(), grayBuffer.data(), grayBuffer.size());
    return image;
}

void generateHeatmapTexture()
{
    std::vector<Point> data = generateData(1024, 1024, 100);
    osg::ref_ptr<osg::Image> heatmap2dImage = generateHeatmap(1024, 1024, data);
    osg::ref_ptr<osg::Image> heightmapImage = generateHeightmap(1024, 1024, data);
    // 使用OSG保存图像
    if (osgDB::writeImageFile(*heatmap2dImage, "heatmap2d.png")) {
        std::cout << "Image saved as " << "heatmap_osg.png" << std::endl;
    }
    else {
        std::cerr << "Error saving image." << std::endl;
    }

    if (osgDB::writeImageFile(*heightmapImage, "heightmap.png")) {
        std::cout << "Image saved as " << "heightmap.png" << std::endl;
    }
    else {
        std::cerr << "Error saving image." << std::endl;
    }
}

// 创建地形节点
osg::ref_ptr<osg::Node> createTerrain(osg::Image* heightmap, osg::Image* heatmap) {
    // 创建几何体
    osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry();
    osg::ref_ptr<osg::Geode> geode = new osg::Geode();
    geode->addDrawable(geometry);

    // 创建顶点数组
    osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array();
    const int width = heightmap->s();
    const int height = heightmap->t();
    const float terrainSize = 200.0f; // 地形物理尺寸
    const float heightScale = 50.0f;  // 高度缩放系数

    // 生成顶点数据
    unsigned char* heightData = heightmap->data();
    for (int y = 0; y < height; ++y) {
        for (int x = 0; x < width; ++x) {
            // 计算顶点位置(居中)
            float xPos = (x - width / 2.0f) * (terrainSize / width);
            float yPos = (y - height / 2.0f) * (terrainSize / height);
            float zPos = heightData[y * width + x] / 255.0f * heightScale;

            vertices->push_back(osg::Vec3(xPos, yPos, zPos));
        }
    }

    // 创建索引数组(三角形带)
    osg::ref_ptr<osg::DrawElementsUShort> indices =
        new osg::DrawElementsUShort(GL_TRIANGLES);
    for (int y = 0; y < height - 1; ++y) {
        for (int x = 0; x < width - 1; ++x) {
            // 创建两个三角形组成四边形
            int i0 = y * width + x;
            int i1 = i0 + 1;
            int i2 = i0 + width;
            int i3 = i2 + 1;

            indices->push_back(i1);
            indices->push_back(i2);
            indices->push_back(i0);

            indices->push_back(i3);
            indices->push_back(i2);
            indices->push_back(i1);
        }
    }

    // 设置几何体数据
    geometry->setVertexArray(vertices);
    geometry->addPrimitiveSet(indices);

    // 自动生成法线
    osgUtil::SmoothingVisitor::smooth(*geometry);

    // 创建纹理坐标数组
    osg::ref_ptr<osg::Vec2Array> texCoords = new osg::Vec2Array();
    for (int y = 0; y < height; ++y) {
        for (int x = 0; x < width; ++x) {
            // 归一化纹理坐标 [0,1]
            float u = static_cast<float>(x) / (width - 1);
            float v = static_cast<float>(y) / (height - 1);
            texCoords->push_back(osg::Vec2(u, v));
        }
    }
    geometry->setTexCoordArray(0, texCoords);

    // 应用纹理
    osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D();
    texture->setImage(heatmap);
    texture->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
    texture->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
    texture->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT);
    texture->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT);

    osg::StateSet* stateset = geode->getOrCreateStateSet();
    stateset->setTextureAttributeAndModes(0, texture);
    stateset->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
    stateset->setMode(GL_BLEND, osg::StateAttribute::ON);
    return geode;
}

osg::Geode* createHeatmap3D() {
    const int GRID_SIZE = 256;
    osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;
    osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;
    osg::ref_ptr<osg::Vec2Array> texCoords = new osg::Vec2Array;

    for (int y = 0; y < GRID_SIZE; ++y) {
        for (int x = 0; x < GRID_SIZE; ++x) {
            float u = x / (GRID_SIZE - 1.0f);
            float v = y / (GRID_SIZE - 1.0f);
            vertices->push_back(osg::Vec3(u * 100 - 50, v * 100 - 50, 0)); // 居中显示
            texCoords->push_back(osg::Vec2(u, v));
        }
    }

    // 创建索引
    osg::ref_ptr<osg::DrawElementsUInt> indices =
        new osg::DrawElementsUInt(GL_TRIANGLES);
    for (int y = 0; y < GRID_SIZE - 1; ++y) {
        for (int x = 0; x < GRID_SIZE - 1; ++x) {
            int i0 = y * GRID_SIZE + x;
            int i1 = i0 + 1;
            int i2 = i0 + GRID_SIZE;
            int i3 = i2 + 1;

            indices->push_back(i1);
            indices->push_back(i2);
            indices->push_back(i0);
            indices->push_back(i3);
            indices->push_back(i2);
            indices->push_back(i1);
        }
    }

    geom->setVertexArray(vertices);
    geom->setTexCoordArray(0, texCoords);
    geom->addPrimitiveSet(indices);

    osgUtil::SmoothingVisitor::smooth(*geom);

    osg::Geode* geode = new osg::Geode;
    geode->addDrawable(geom);
    return geode;
}

osg::Texture2D* createTexture(osg::Image* image) {
    osg::Texture2D* tex = new osg::Texture2D;
    tex->setImage(image);
    tex->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
    tex->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
    tex->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT);
    tex->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT);
    return tex;
}

void setupStateSet(osg::Geode* geode) {
    osg::StateSet* ss = geode->getOrCreateStateSet();

    // 混合设置
    ss->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
    ss->setMode(GL_BLEND, osg::StateAttribute::ON);


    std::vector<Point> data = generateData(256, 256, 100);
    osg::ref_ptr<osg::Image> heatmap2dImage1 = generateHeatmap(256, 256, data);
    osg::ref_ptr<osg::Image> heightmapImage1 = generateHeightmap(256, 256, data);

    struct Textures {
        osg::ref_ptr<osg::Texture2D> current;
        osg::ref_ptr<osg::Texture2D> next;
        float transition = 0.0f;
        bool updating = false;
    };
    Textures heightTex, heatmapTex;
    // 初始纹理
    heightTex.current = createTexture(heightmapImage1);
    heatmapTex.current = createTexture(heatmap2dImage1);
    data = generateData(256, 256, 200);
    osg::ref_ptr<osg::Image> heatmap2dImage2 = generateHeatmap(256, 256, data);
    osg::ref_ptr<osg::Image> heightmapImage2 = generateHeightmap(256, 256, data);
    heightTex.next = createTexture(heightmapImage2);
    heatmapTex.next = createTexture(heatmap2dImage2);

    osg::Program* program = new osg::Program;
    ss->setAttribute(program);
    program->addShader(osgDB::readRefShaderFile(osg::Shader::VERTEX, SHADER_PATH + R"(heatmap3d.vert)"));
    program->addShader(osgDB::readRefShaderFile(osg::Shader::FRAGMENT, SHADER_PATH + R"(heatmap3d.frag)"));
    ss->setAttributeAndModes(program);
    program->addBindAttribLocation("texCoord", osg::Drawable::TEXTURE_COORDS_0);
    // 绑定纹理单元
    ss->setTextureAttribute(0, heightTex.current);
    ss->setTextureAttribute(1, heightTex.next);
    ss->setTextureAttribute(2, heatmapTex.current);
    ss->setTextureAttribute(3, heatmapTex.next);

    // Uniform绑定
    ss->addUniform(new osg::Uniform("heightMap", 0));
    ss->addUniform(new osg::Uniform("nextHeightMap", 1));
    ss->addUniform(new osg::Uniform("heatmap", 2));
    ss->addUniform(new osg::Uniform("nextHeatmap", 3));
    ss->addUniform(new osg::Uniform("transitionProgress", 0.0f));
}


osg::Timer_t startTime;
bool startSimulate = false;
class KeyboardEventHandler : public osgGA::GUIEventHandler {
public:
    KeyboardEventHandler(){}

    bool handle(const osgGA::GUIEventAdapter& ea, osgGA::GUIActionAdapter& aa) override {
        if (ea.getEventType() == osgGA::GUIEventAdapter::KEYDOWN) {
            switch (ea.getKey()) {
            case 't':  
                if (!startSimulate)
                {
                    startTime = osg::Timer::instance()->tick();
                    startSimulate = true;
                }
                return true;
            default:
                return false;
            }
        }
        return false;
    }

private:
};

class TimeUpdateCallback : public osg::NodeCallback
{
public:
    TimeUpdateCallback()  {}

    virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
    {
        if (startSimulate)
        {
            osg::StateSet* ss = node->getStateSet();
            if (ss)
            {
                float time = osg::Timer::instance()->delta_s(startTime, osg::Timer::instance()->tick()) / 3.0f;
                time = osg::clampBetween(time, 0.0f, 1.0f);
                if (time == 1.0)
                {
                    std::random_device rd;  // 用于获取随机种子
                    std::mt19937 gen(rd()); // 使用 Mersenne Twister 算法

                    // 定义一个分布范围 [100, 200]
                    std::uniform_int_distribution<> dis(100, 200);
                    std::vector<Point> data = generateData(256, 256, dis(gen));
                    osg::ref_ptr<osg::Image> heatmap2dImage = generateHeatmap(256, 256, data);
                    osg::ref_ptr<osg::Image> heightmapImage = generateHeightmap(256, 256, data);
                    ss->setTextureAttribute(0, ss->getTextureAttribute(1, osg::StateAttribute::TEXTURE));
                    ss->setTextureAttribute(1, createTexture(heightmapImage));
                    ss->setTextureAttribute(2, ss->getTextureAttribute(3, osg::StateAttribute::TEXTURE));
                    ss->setTextureAttribute(3, createTexture(heatmap2dImage));
                    ss->getUniform("transitionProgress")->set(0.0f);
                    startTime = osg::Timer::instance()->tick();
                }
                else
                    ss->getUniform("transitionProgress")->set(time);
            }
            traverse(node, nv);
        }
    }

};

int preview3DHeatmapWithAnimate()
{
    osg::Geode* geode = createHeatmap3D();
    setupStateSet(geode);
    geode->setUpdateCallback(new TimeUpdateCallback());

    osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer;
    osg::ref_ptr<osg::Group> group = new osg::Group;
    group->addChild(geode);

    viewer->setSceneData(group);
    viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet()));
    viewer->addEventHandler(new osgViewer::StatsHandler());
    osg::ref_ptr<KeyboardEventHandler> keyboardHandler = new KeyboardEventHandler;
    viewer->addEventHandler(keyboardHandler);
    return viewer->run();
}

int preview3DHeatmap()
{
    std::vector<Point> data = generateData(256, 256, 100);
    osg::ref_ptr<osg::Image> heatmap2dImage = generateHeatmap(256, 256, data);
    osg::ref_ptr<osg::Image> heightmapImage = generateHeightmap(256, 256, data);
    osg::ref_ptr<osg::Node> node = createTerrain(heightmapImage, heatmap2dImage);


	osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer;
	osg::ref_ptr<osg::Group> group = new osg::Group;
    group->addChild(node);

	viewer->setSceneData(group);
	viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet()));
	viewer->addEventHandler(new osgViewer::StatsHandler());
	return viewer->run();
}

int preview2DHeatmap() {
    std::vector<Point> data = generateData(256, 256, 100);
    osg::ref_ptr<osg::Image> heatmap2dImage = generateHeatmap(256, 256, data);

    // 创建带纹理的四边形几何体
    osg::ref_ptr<osg::Geometry> quad = osg::createTexturedQuadGeometry(
        osg::Vec3(-1.0f, -1.0f, 0.0f), // 左下角顶点
        osg::Vec3(2.0f, 0.0f, 0.0f),  // 宽度向量
        osg::Vec3(0.0f, 2.0f, 0.0f),  // 高度向量
        0.0f, 0.0f, 1.0f, 1.0f        // 纹理坐标 (左下角到右上角)
    );

    osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
    texture->setImage(heatmap2dImage);

    osg::ref_ptr<osg::StateSet> stateSet = quad->getOrCreateStateSet();
    stateSet->setTextureAttributeAndModes(0, texture, osg::StateAttribute::ON);

    // 创建Geode并添加几何体
    osg::ref_ptr<osg::Geode> geode = new osg::Geode;
    geode->addDrawable(quad);

    // 创建场景图根节点
    osg::ref_ptr<osg::Group> root = new osg::Group;
    root->addChild(geode);

    // 创建并设置Viewer
    osgViewer::Viewer viewer;
    viewer.setSceneData(root);
    return viewer.run();
}

int main()
{
    //return preview2DHeatmap();
    //return preview3DHeatmap();
    return preview3DHeatmapWithAnimate();
}

3、着色器代码

c 复制代码
//heatmap3d.vert
#version 110
/* GLSL 1.10需要显式声明精度 (OpenGL ES要求) */
#ifdef GL_ES
precision highp  float;
#endif
/* 自定义 uniforms */
uniform sampler2D heightMap;
uniform sampler2D nextHeightMap;
uniform float transitionProgress;
attribute vec2 texCoord;
// 输入纹理坐标属性(对应几何体的第0层纹理)
varying vec2 vTexCoord;

void main() {
    float x = gl_Vertex.x;
    float y = gl_Vertex.y;
    
    vTexCoord = texCoord;
    
    // 使用 texture2D 代替 texture 函数
    float currentHeight = texture2D(heightMap, texCoord.xy).r * 50.0;
    float nextHeight = texture2D(nextHeightMap, texCoord.xy).r * 50.0;
    
    // 高度插值计算
    float finalHeight = mix(currentHeight, nextHeight, transitionProgress);
    
    // 坐标变换
    vec4 pos = vec4(x, y, finalHeight, 1.0);
    gl_Position = gl_ModelViewProjectionMatrix * pos;
}
c 复制代码
//heatmap3d.frag
#version 110
/* GLSL 1.10需要显式声明精度 (OpenGL ES要求) */
#ifdef GL_ES
precision mediump float;
#endif

uniform sampler2D heatmap;
uniform sampler2D nextHeatmap;
uniform float transitionProgress;
varying vec2 vTexCoord;

void main() {
    // 使用texture2D替代texture函数
    vec4 currentColor = texture2D(heatmap, vTexCoord);
    vec4 nextColor = texture2D(nextHeatmap, vTexCoord);
    
    // 使用gl_FragColor替代自定义输出
    gl_FragColor = mix(currentColor, nextColor, transitionProgress);
}
相关推荐
渊鱼L3 小时前
CAD纤维密堆积3D插件 圆柱体堆积建模
3d
NBI大数据可视化分析4 小时前
数据分析助力企业降本增效-成本管控办法
信息可视化·数据挖掘·数据分析·数据可视化·bi
兔兔不爱吃萝卜4 小时前
3D标定中的平面约束-平面方程的几何意义
算法·平面·3d
爱凤的小光6 小时前
reconstruct_3d_object_model_for_matching例子
3d·halcon
恋恋西风7 小时前
超声重建,3D重建 超声三维重建,三维可视化平台 UR 3D Reconstruction
3d·三维重建·us·超声三维重建
皮皮的江山10 小时前
基于AI Text2SQL的数据可视化方案
后端·aigc·数据可视化
机械心14 小时前
深度学习视觉BEV 3D目标检测算法综述
深度学习·目标检测·3d·transformer·bev
BBTSOH159015160441 天前
Acer Spatial Labs 3D裸眼立体显示器
3d·计算机外设·vr·虚拟现实
wjpwjpwjp08311 天前
【3D视觉学习笔记2】摄像机的标定、畸变的建模、2D/3D变换
人工智能·笔记·深度学习·学习·计算机视觉·3d