大语言模型入门文献推荐

分享一些入门大模型时候学习过的文献。分成两类:大模型微调论文、基础大模型论文。这些论文不用精通,明白其基本原理即可。目前技术发展太快,更多的时间和精力应该放在前沿论文的学习上。

一、基础大模型论文

首先是目前主流的一些模型,包括GPT(Openai), GLM(清华)Llama(Meta)。相关的大模型论文还有很多,例如Qwen等。读者能就其中的论文做到举一反三即可。

  1. GPT1: Improving language understanding by generative pre-training
  2. GPT2: Language models are unsupervised multitask learners
  3. **GPT-3:**Language Models are Few-Shot Learners
  4. GPT-4 Technical Report
  5. InstructGPT: Training language models to follow instructions with human feedback
  6. **GLM:**General Language Model Pretraining with Autoregressive Blank Infilling
  7. **GLM-130B:**An Open Bilingual Pre-trained Model
  8. **LLaMA:**Open and Efficient Foundation Language Models
  9. Llama 2: Open Foundation and Fine-Tuned Chat Model

还有一些经典的文本生成论文,大家有时间也可以阅读。

  1. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
  2. **T5:**Exploring the limits of transfer learning with a unified text-to-text transformer
  3. **ELMO:**Deep contextualized word representations

二、微调方法论文

有关大模型微调方法,目前LoRA几乎是垄断的情况,调起来也非常简单。所以其他微调方法了解即可。

  1. Prefix-Tuning: Optimizing Continuous Prompts for Generation
  2. P-tuning: GPT Understands, Too
  3. **P-Tuning V2:**Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks
  4. **Prompt tuning:**The Power of Scale for Parameter-Efficient Prompt Tuning
  5. Adapter: Parameter-Efficient Transfer Learning for NLP
  6. **LORA:**LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

此外也有一些写的很好的微调方法综述文章。

  1. Towards a unified view of parameter-efficient transfer learning
  2. Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models
  3. Scaling down to scale up: A guide to parameter-efficient fine-tuning
  4. UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning

刚学习的时候,经常会听到指令微调(Instruction tuning),有监督微调(supervised finetuning等),其实都是一回事,这边也放一些相关文章。

  1. Instruction Tuning for Large Language Models: A Survey
  2. Instruct learning: Finetuned Language Models are Zero-shot Learners

三、其他资料

1、P-tuning:自动构建模版,释放语言模型潜能

2、PET,必须要GPT3吗?不,BERT的MLM模型也能小样本学习

相关推荐
乌恩大侠22 分钟前
自动驾驶的未来:多模态传感器钻机
人工智能·机器学习·自动驾驶
光锥智能1 小时前
AI办公的效率革命,金山办公从未被颠覆
人工智能
GetcharZp2 小时前
爆肝整理!带你快速上手LangChain,轻松集成DeepSeek,打造自己的AI应用
人工智能·llm·deepseek
猫头虎2 小时前
新手小白如何快速检测IP 的好坏?
网络·人工智能·网络协议·tcp/ip·开源·github·php
GeeJoe3 小时前
凡人炼丹传之 · 我让 AI 帮我训练了一个 AI
人工智能·机器学习·llm
小和尚同志3 小时前
Dify29. 为你的 Dify API 穿层衣服吧
人工智能·aigc
不会学习的小白O^O3 小时前
神经网络----卷积层(Conv2D)
人工智能·深度学习·神经网络
bastgia3 小时前
Transformer终结者?Google DeepMind新架构实现2倍推理速度和一半内存占用
人工智能·llm
努力一点9483 小时前
ubuntu22.04系统入门 linux入门(二) 简单命令 多实践以及相关文件管理命令
linux·运维·服务器·人工智能·gpu算力