大语言模型入门文献推荐

分享一些入门大模型时候学习过的文献。分成两类:大模型微调论文、基础大模型论文。这些论文不用精通,明白其基本原理即可。目前技术发展太快,更多的时间和精力应该放在前沿论文的学习上。

一、基础大模型论文

首先是目前主流的一些模型,包括GPT(Openai), GLM(清华)Llama(Meta)。相关的大模型论文还有很多,例如Qwen等。读者能就其中的论文做到举一反三即可。

  1. GPT1: Improving language understanding by generative pre-training
  2. GPT2: Language models are unsupervised multitask learners
  3. **GPT-3:**Language Models are Few-Shot Learners
  4. GPT-4 Technical Report
  5. InstructGPT: Training language models to follow instructions with human feedback
  6. **GLM:**General Language Model Pretraining with Autoregressive Blank Infilling
  7. **GLM-130B:**An Open Bilingual Pre-trained Model
  8. **LLaMA:**Open and Efficient Foundation Language Models
  9. Llama 2: Open Foundation and Fine-Tuned Chat Model

还有一些经典的文本生成论文,大家有时间也可以阅读。

  1. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
  2. **T5:**Exploring the limits of transfer learning with a unified text-to-text transformer
  3. **ELMO:**Deep contextualized word representations

二、微调方法论文

有关大模型微调方法,目前LoRA几乎是垄断的情况,调起来也非常简单。所以其他微调方法了解即可。

  1. Prefix-Tuning: Optimizing Continuous Prompts for Generation
  2. P-tuning: GPT Understands, Too
  3. **P-Tuning V2:**Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks
  4. **Prompt tuning:**The Power of Scale for Parameter-Efficient Prompt Tuning
  5. Adapter: Parameter-Efficient Transfer Learning for NLP
  6. **LORA:**LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

此外也有一些写的很好的微调方法综述文章。

  1. Towards a unified view of parameter-efficient transfer learning
  2. Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models
  3. Scaling down to scale up: A guide to parameter-efficient fine-tuning
  4. UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning

刚学习的时候,经常会听到指令微调(Instruction tuning),有监督微调(supervised finetuning等),其实都是一回事,这边也放一些相关文章。

  1. Instruction Tuning for Large Language Models: A Survey
  2. Instruct learning: Finetuned Language Models are Zero-shot Learners

三、其他资料

1、P-tuning:自动构建模版,释放语言模型潜能

2、PET,必须要GPT3吗?不,BERT的MLM模型也能小样本学习

相关推荐
工藤学编程3 分钟前
零基础学AI大模型之旅游规划智能体之react_agent实战
人工智能·react.js·旅游
好奇龙猫8 分钟前
【人工智能学习-AI入试相关题目练习-第一次】
人工智能·学习
Java后端的Ai之路10 分钟前
【阿里AI大赛】-二手车价格预测使用五折交叉验证
人工智能·深度学习·机器学习·二手车价格预测·天池
数说星榆18111 分钟前
在线简单画泳道图工具 PC端无水印
大数据·论文阅读·人工智能·架构·流程图·论文笔记
过河卒_zh156676613 分钟前
情感型AI被“立规矩”,AI陪伴时代进入下半场
人工智能·算法·aigc·生成式人工智能·算法备案
工业HMI实战笔记13 分钟前
拯救HMI×施耐德电气|以AI重塑工业人机交互新范式
人工智能·ui·信息可视化·自动化·人机交互·交互
张彦峰ZYF14 分钟前
多智能体(Multi-Agent)系统在人工智能中的应用与发展
人工智能·autogen·metagpt·multi-agent·agentscope·camel ai·agentverse
启途AI14 分钟前
2026年课件制作新范式:AI PPT工具深度解析
大数据·人工智能·powerpoint·ppt
木头程序员15 分钟前
机器学习核心知识点汇总
大数据·人工智能·机器学习·kmeans·近邻算法
智界前沿18 分钟前
3D数字人规模化商用时代来临:极速响应重新定义人机交互体验
人工智能·aigc·数字人