3D视觉相机引导机器人的原理

主要基于以下几个方面:

  1. 图像采集

3D数据采集:3D视觉相机通过内置的传感器和光源,采用不同的3D成像技术来获取物体的三维信息。例如,常见的有激光三角测量法,即利用2D相机拍摄到的激光线形变,通过三角公式获取被测物的高度信息;还有TOF(Time of Flight)原理,即利用光飞行的时间差来获取物体的高度,以及结构光原理,由投影仪投射出一系列条纹光,相机拍摄后解算出物体的3D信息。

多视角采集:在Eye-in-Hand方式下,3D相机安装在机械手上,随机械手运动对物体进行多角度扫描;在Eye-to-Hand方式下,3D相机安装在机械手附近的龙门架上,对物体进行固定视角或多视角扫描。

  1. 数据处理与分析

特征提取:采集到的3D图像数据会被传送至机器人的内部计算机系统,通过先进的图像处理和计算机视觉算法,对图像中的目标物体进行特征提取,如边缘、角点、纹理等特征,以便后续的目标识别和定位。

目标识别:将提取的特征与预先存储在机器人内存中的模板或模型进行比对和匹配,从而确定目标物体的类型、姿态和位置等信息。这一过程可能涉及到机器学习、深度学习等人工智能技术,以提高目标识别的准确性和鲁棒性。

  1. 手眼标定

坐标系转换:由于3D视觉相机采集的数据是基于相机坐标系的,而机器人的操作是基于其自身的基坐标系或工具坐标系的,因此需要通过手眼标定来确定相机坐标系与机器人坐标系之间的位姿关系。

标定方法:根据Eye-in-Hand方式和Eye-to-Hand方式的不同,手眼标定的方法也有所不同。但最终目的都是将物体相对于相机的坐标转换为物体相对于机器人工具坐标系的坐标,从而实现对机器人的准确引导。

  1. 路径规划与导航

目标定位:基于手眼标定的结果和目标识别的信息,确定目标物体在机器人坐标系中的位置和姿态。

路径规划:机器人根据自身的位置、目标物体的位置以及工作环境中的障碍物等信息,利用路径规划算法生成一条从起始位置到目标位置的无碰撞最优路径。

  1. 操作执行

动作控制:机器人按照规划好的路径移动到目标物体附近,然后通过搭载的机械臂、夹爪等执行机构,根据预先设定的任务要求,对目标物体进行抓取、操纵、装配、焊接等操作。

3D视觉相机引导机器人通过图像采集、数据处理与分析、手眼标定、路径规划与导航以及操作执行等多个环节的协同工作,实现了对目标物体的高精度定位、识别和操作,从而在工业生产、物流仓储、医疗卫生等领域发挥着重要作用。

相关推荐
孞㐑¥1 小时前
Linux之Socket 编程 UDP
linux·服务器·c++·经验分享·笔记·网络协议·udp
June bug5 小时前
【软考中级·软件评测师】下午题·面向对象测试之架构考点全析:分层、分布式、微内核与事件驱动
经验分享·分布式·职场和发展·架构·学习方法·测试·软考
青牛科技-Allen5 小时前
GC3910S:一款高性能双通道直流电机驱动芯片
stm32·单片机·嵌入式硬件·机器人·医疗器械·水泵、
物联网软硬件开发-轨物科技8 小时前
【轨物洞见】光伏机器人与组件、支架智能化协同白皮书
机器人
中钧科技10 小时前
中钧科技亮相2025 亚欧商品贸易博览会,赋能数字经济新未来!
科技
2401_8353024810 小时前
佰力博科技与您探讨压电材料的原理与压电效应的应用
科技·能源·材料工程
PNP机器人11 小时前
探索具身智能新高度——机器人在数据收集与学习策略中的优势和机会
机器人
NYKJ.Co11 小时前
开疆智能CCLinkIE转CANopen网关连接GBS20机器人配置案例
机器人·canopen·cclinkie
zandy101111 小时前
衡石科技chatbot分析手册--钉钉数据问答机器人配置
科技·机器人·钉钉·chatbot·衡石科技
GEO科技13 小时前
从SEO到GEO:AI时代的品牌大模型种草与数字营销重构
经验分享