- 首先,B树其实就是多叉平衡树,它最多有 M 个子节点,一个节点内最多有 M-1 个数据,每个数据都由 索引 和 记录 组成。相比于平衡二叉树,B树的高度更小,从而减少IO次数。但它也有很大的问题:为了查询某个记录,B树每次IO都需要把一个节点内的数据加载到内存中,与目标的索引进行比对,这会占用内存空间

- B+树其实就是B树的升级:
- 只有叶子节点才会存放 索引 和 记录,并形成一条链表;而非叶子节点只存放索引
- 所有的索引和记录都统一汇集到叶子节点中,形成一条链表
因此,对于单点查询、范围查询、插入删除,B+树都拥有更高的性能
- 单点查询:
- B 树进行单个索引查询时,最快可以在 O(1) 的时间内就查到,但有时需要访问到叶子节点才能找到索引。所以 B 树的查询效率 波动较大。平均来看,会比 B+ 树稍快一些。
- 但是,如果数据量相同,B+树的一个节点内可以存放更多的索引,因此 B+ 树比 B 树高度更小,查询底层节点的磁盘 I/O次数会更少。
- 范围查询 :
- B+ 树所有叶子节点间有一个链表进行连接,所以可以直接在链表上进行范围查询,而 B 树只能通过一个节点一个节点的比对,,范围查询效率不如 B+ 树。
- 所以 对于大量的单个索引查询的场景,可以考虑 B 树,比如nosql的MongoDB;存在大量范围检索的场景,适合使用 B+树,比如数据库
- 删除和插入效率:
- 由于B+所有的记录 都保存在叶子节点中,而非叶子节点中只有一部分记录的索引。也就是说,B+树的叶子节点中有很多冗余节点。所以,当删除一个索引时,往往只需要在叶子节点中移除这个节点,非叶子节点并不需要做出调整 或者只需要做一些很小的调整;插入也是同样,就算节点饱和,存在节点的分裂,但是最多只涉及树的一条路径。
- 而 B树的所有节点既存索引,又存记录,删除和插入节点的时候树形的变化非常复杂