机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。其基本原理是将所有样本点划分到 K 个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。

算法流程如下:

  1. 随机选择 K 个样本点作为初始的聚类中心。
  2. 将每个样本点分配到与其最近的聚类中心所在的簇。
  3. 更新每个簇的聚类中心为该簇所有样本点的平均值。
  4. 重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。

优点:

  1. 简单且易于实现。
  2. 对大规模数据集也能快速收敛。
  3. 可以对非凸数据集进行聚类。

缺点:

  1. 需要事先确定聚类簇的数量 K,选择不当可能导致聚类效果不佳。
  2. 对于不同形状、密度的簇效果可能不理想。
  3. 对初始聚类中心的选择敏感,可能会导致收敛到局部最优解。

在实际应用中,K-均值聚类常用于数据挖掘、图像处理、自然语言处理等领域。但需要根据具体问题特点选择适合的聚类算法,并结合数据集特点来确定合适的 K 值,以获得更好的聚类效果。

相关推荐
杰克尼1 小时前
11. 盛最多水的容器
算法·leetcode·职场和发展
乌恩大侠1 小时前
自动驾驶的未来:多模态传感器钻机
人工智能·机器学习·自动驾驶
程序员Xu3 小时前
【OD机试题解法笔记】查找接口成功率最优时间段
笔记·算法
技术思考者3 小时前
Leetcode - 反转字符串
数据结构·算法·leetcode
GeeJoe4 小时前
凡人炼丹传之 · 我让 AI 帮我训练了一个 AI
人工智能·机器学习·llm
SKYDROID云卓小助手4 小时前
无人设备遥控器之多设备协同技术篇
网络·人工智能·嵌入式硬件·算法·信号处理
熬了夜的程序员5 小时前
【华为机试】34. 在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·华为od·华为·面试·golang
小瑞瑞acd5 小时前
层次聚类:无需“猜”K值,如何让数据自己画出“家族图谱”?
机器学习·支持向量机·聚类
phltxy5 小时前
ArrayList与顺序表
java·算法
Hcoco_me5 小时前
具身智能 && 自动驾驶相关岗位的技术栈与能力地图
人工智能·机器学习·自动驾驶