机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。其基本原理是将所有样本点划分到 K 个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。

算法流程如下:

  1. 随机选择 K 个样本点作为初始的聚类中心。
  2. 将每个样本点分配到与其最近的聚类中心所在的簇。
  3. 更新每个簇的聚类中心为该簇所有样本点的平均值。
  4. 重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。

优点:

  1. 简单且易于实现。
  2. 对大规模数据集也能快速收敛。
  3. 可以对非凸数据集进行聚类。

缺点:

  1. 需要事先确定聚类簇的数量 K,选择不当可能导致聚类效果不佳。
  2. 对于不同形状、密度的簇效果可能不理想。
  3. 对初始聚类中心的选择敏感,可能会导致收敛到局部最优解。

在实际应用中,K-均值聚类常用于数据挖掘、图像处理、自然语言处理等领域。但需要根据具体问题特点选择适合的聚类算法,并结合数据集特点来确定合适的 K 值,以获得更好的聚类效果。

相关推荐
进击的荆棘1 小时前
优选算法——滑动窗口
c++·算法·leetcode
csdn_aspnet1 小时前
奈飞工厂算法:个性化推荐系统的极限复刻
算法·netflix·奈飞
小白_ysf1 小时前
Vue 中常见的加密方法(对称、非对称、杂凑算法)
前端·vue.js·算法
多米Domi0112 小时前
0x3f 第49天 面向实习的八股背诵第六天 过了一遍JVM的知识点,看了相关视频讲解JVM内存,垃圾清理,买了plus,稍微看了点确定一下方向
jvm·数据结构·python·算法·leetcode
源于花海8 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不懒不懒10 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60010 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
A_nanda11 小时前
c# MOdbus rto读写串口,如何不相互影响
算法·c#·多线程
小鸡吃米…11 小时前
机器学习中的代价函数
人工智能·python·机器学习
代码雕刻家12 小时前
2.4.蓝桥杯-分巧克力
算法·蓝桥杯