机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。其基本原理是将所有样本点划分到 K 个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。

算法流程如下:

  1. 随机选择 K 个样本点作为初始的聚类中心。
  2. 将每个样本点分配到与其最近的聚类中心所在的簇。
  3. 更新每个簇的聚类中心为该簇所有样本点的平均值。
  4. 重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。

优点:

  1. 简单且易于实现。
  2. 对大规模数据集也能快速收敛。
  3. 可以对非凸数据集进行聚类。

缺点:

  1. 需要事先确定聚类簇的数量 K,选择不当可能导致聚类效果不佳。
  2. 对于不同形状、密度的簇效果可能不理想。
  3. 对初始聚类中心的选择敏感,可能会导致收敛到局部最优解。

在实际应用中,K-均值聚类常用于数据挖掘、图像处理、自然语言处理等领域。但需要根据具体问题特点选择适合的聚类算法,并结合数据集特点来确定合适的 K 值,以获得更好的聚类效果。

相关推荐
luoganttcc8 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
Andrew_Ryan8 小时前
llama.cpp Build Instructions
算法
玖剹8 小时前
递归练习题(四)
c语言·数据结构·c++·算法·leetcode·深度优先·深度优先遍历
做人不要太理性8 小时前
【Linux系统】线程的同步与互斥:核心原理、锁机制与实战代码
linux·服务器·算法
向阳逐梦8 小时前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
Mz12219 小时前
day04 小美的区间删除
数据结构·算法
_OP_CHEN9 小时前
算法基础篇:(十九)吃透 BFS!从原理到实战,解锁宽度优先搜索的核心玩法
算法·蓝桥杯·bfs·宽度优先·算法竞赛·acm/icpc
小猪咪piggy9 小时前
【算法】day 20 leetcode 贪心
算法·leetcode·职场和发展
forestsea9 小时前
现代 JavaScript 加密技术详解:Web Crypto API 与常见算法实践
前端·javascript·算法
张洪权9 小时前
bcrypt 加密
算法