DQN 玩 2048 实战|第二期!设计 ε 贪心策略神经网络,简单训练一下吧!

视频链接:

DQN 玩 2048 实战|第二期!设计 ε 贪心策略神经网络,简单训练一下吧!

代码仓库:LitchiCheng/DRL-learning: 深度强化学习

概念介绍:

DQN(深度 Q 网络,Deep Q-Network)中,Q 的全称是 "Quality"(质量),对应的完整术语是"状态 - 动作值函数"(State-Action Value Function),记作 Q(s,a)

定义:Q(s,a) 表示在状态 s 下执行动作 a 后,智能体未来累积奖励的期望(即 "长期收益的质量")。

作用:

Q 值是强化学习中 "决策" 的核心依据。智能体通过比较当前状态下所有可能动作的 Q 值,选择 Q 值最大的动作(即 "最优动作"),以最大化累积奖励。

网络设计有三点:

  1. 深度 Q 网络定义:使用 PyTorch 定义一个神经网络,用于近似 Q 值函数。
  2. 经验回放机制:实现经验回放缓冲区,用于存储智能体的经验,并随机采样进行训练。
  3. 使用 Epsilon-greedy 策略,是一种平衡探索(Exploration)与利用(Exploitation)的经典策略,核心解决 "如何避免智能体只依赖已知最优动作,而错过潜在更好策略" 的问题。

下面是代码

复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.table import Table

# 2048 游戏环境类
class Game2048:
    def __init__(self):
        self.board = np.zeros((4, 4), dtype=int)
        self.add_random_tile()
        self.add_random_tile()

    def add_random_tile(self):
        empty_cells = np.argwhere(self.board == 0)
        if len(empty_cells) > 0:
            index = random.choice(empty_cells)
            self.board[index[0], index[1]] = 2 if random.random() < 0.9 else 4

    def move_left(self):
        reward = 0
        new_board = np.copy(self.board)
        for row in range(4):
            line = new_board[row]
            non_zero = line[line != 0]
            merged = []
            i = 0
            while i < len(non_zero):
                if i + 1 < len(non_zero) and non_zero[i] == non_zero[i + 1]:
                    merged.append(2 * non_zero[i])
                    reward += 2 * non_zero[i]
                    i += 2
                else:
                    merged.append(non_zero[i])
                    i += 1
            new_board[row] = np.pad(merged, (0, 4 - len(merged)), 'constant')
        if not np.array_equal(new_board, self.board):
            self.board = new_board
            self.add_random_tile()
        return reward

    def move_right(self):
        self.board = np.fliplr(self.board)
        reward = self.move_left()
        self.board = np.fliplr(self.board)
        return reward

    def move_up(self):
        self.board = self.board.T
        reward = self.move_left()
        self.board = self.board.T
        return reward

    def move_down(self):
        self.board = self.board.T
        reward = self.move_right()
        self.board = self.board.T
        return reward

    def step(self, action):
        if action == 0:
            reward = self.move_left()
        elif action == 1:
            reward = self.move_right()
        elif action == 2:
            reward = self.move_up()
        elif action == 3:
            reward = self.move_down()
        done = not np.any(self.board == 0) and all([
            np.all(self.board[:, i] != self.board[:, i + 1]) for i in range(3)
        ]) and all([
            np.all(self.board[i, :] != self.board[i + 1, :]) for i in range(3)
        ])
        state = self.board.flatten()
        return state, reward, done

    def reset(self):
        self.board = np.zeros((4, 4), dtype=int)
        self.add_random_tile()
        self.add_random_tile()
        return self.board.flatten()

# 深度 Q 网络类
class DQN(nn.Module):
    def __init__(self, input_size, output_size):
        super(DQN, self).__init__()
        self.fc1 = nn.Linear(input_size, 128)
        self.fc2 = nn.Linear(128, 128)
        self.fc3 = nn.Linear(128, output_size)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

# 经验回放缓冲区类
class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = deque(maxlen=capacity)

    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        batch = random.sample(self.buffer, batch_size)
        states, actions, rewards, next_states, dones = zip(*batch)
        return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)

    def __len__(self):
        return len(self.buffer)

# 可视化函数
def visualize_board(board, ax):
    ax.clear()
    table = Table(ax, bbox=[0, 0, 1, 1])
    nrows, ncols = board.shape
    width, height = 1.0 / ncols, 1.0 / nrows

    # 定义颜色映射
    cmap = mcolors.LinearSegmentedColormap.from_list("", ["white", "yellow", "orange", "red"])

    for (i, j), val in np.ndenumerate(board):
        color = cmap(np.log2(val + 1) / np.log2(2048 + 1)) if val > 0 else "white"
        table.add_cell(i, j, width, height, text=val if val > 0 else "",
                       loc='center', facecolor=color)

    ax.add_table(table)
    ax.set_axis_off()
    plt.draw()
    plt.pause(0.1)

# 训练函数
def train():
    env = Game2048()
    input_size = 16
    output_size = 4
    model = DQN(input_size, output_size)
    target_model = DQN(input_size, output_size)
    target_model.load_state_dict(model.state_dict())
    target_model.eval()

    optimizer = optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.MSELoss()
    replay_buffer = ReplayBuffer(capacity=10000)
    batch_size = 32
    gamma = 0.99
    epsilon = 1.0
    epsilon_decay = 0.995
    epsilon_min = 0.01
    update_target_freq = 10

    num_episodes = 1000
    fig, ax = plt.subplots()
    for episode in range(num_episodes):
        state = env.reset()
        state = torch.FloatTensor(state).unsqueeze(0)
        done = False
        total_reward = 0
        while not done:
            visualize_board(env.board, ax)
            if random.random() < epsilon:
                action = random.randint(0, output_size - 1)
            else:
                q_values = model(state)
                action = torch.argmax(q_values, dim=1).item()

            next_state, reward, done = env.step(action)
            next_state = torch.FloatTensor(next_state).unsqueeze(0)
            replay_buffer.add(state.squeeze(0).numpy(), action, reward, next_state.squeeze(0).numpy(), done)

            if len(replay_buffer) >= batch_size:
                states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
                states = torch.FloatTensor(states)
                actions = torch.LongTensor(actions)
                rewards = torch.FloatTensor(rewards)
                next_states = torch.FloatTensor(next_states)
                dones = torch.FloatTensor(dones)
                q_values = model(states)
                # 得到每个状态下实际采取动作的 Q 值
                q_values = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
                next_q_values = target_model(next_states)
                # 得到下一个状态下最大的 Q 值
                next_q_values = next_q_values.max(1)[0]
                # 目标 Q 值
                target_q_values = rewards + gamma * (1 - dones) * next_q_values

                loss = criterion(q_values, target_q_values)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            state = next_state
            total_reward += reward

        if episode % update_target_freq == 0:
            target_model.load_state_dict(model.state_dict())

        epsilon = max(epsilon * epsilon_decay, epsilon_min)
        print(f"Episode {episode}: Total Reward = {total_reward}, Epsilon = {epsilon}")

    plt.close()

if __name__ == "__main__":
    train()

运行,会出现matplotlib可视化的2048操作过程,控制台输出当前训练的轮数等信息

相关推荐
明明跟你说过2 分钟前
【Transformer】架构:解锁自然语言处理的无限可能
人工智能·深度学习·机器学习·ai·transformer
钱彬 (Qian Bin)19 分钟前
QT Quick(C++)跨平台应用程序项目实战教程 3 — 项目基本设置(窗体尺寸、中文标题、窗体图标、可执行程序图标)
c++·人工智能·音乐播放器·qml·界面设计·qt quick
硅谷秋水20 分钟前
大语言模型的长思维链推理:综述(上)
人工智能·机器学习·语言模型·自然语言处理
Channing Lewis26 分钟前
DeepSeek + Kimi 自动生成 PPT
人工智能
京东零售技术1 小时前
多智能体强化学习的算力调度创新,让每一份算力都创造广告价值 | 京东零售技术实践
人工智能
说私域1 小时前
知乎平台搜索引擎引流策略与“开源AI大模型AI智能名片S2B2C商城小程序源码“的深度融合研究
人工智能·搜索引擎·微信·小程序·开源·零售
MicrosoftReactor1 小时前
技术速递|.NET AI 模板现已提供预览版
人工智能·.net
潇与上海1 小时前
【机器学习-分类算法】
人工智能·机器学习·分类
Fuction.1 小时前
聚类算法api初步使用
人工智能·机器学习·支持向量机
试剂界的爱马仕1 小时前
早餐 3.20
人工智能·科技·机器学习·ai写作