DQN 玩 2048 实战|第二期!设计 ε 贪心策略神经网络,简单训练一下吧!

视频链接:

DQN 玩 2048 实战|第二期!设计 ε 贪心策略神经网络,简单训练一下吧!

代码仓库:LitchiCheng/DRL-learning: 深度强化学习

概念介绍:

DQN(深度 Q 网络,Deep Q-Network)中,Q 的全称是 "Quality"(质量),对应的完整术语是"状态 - 动作值函数"(State-Action Value Function),记作 Q(s,a)

定义:Q(s,a) 表示在状态 s 下执行动作 a 后,智能体未来累积奖励的期望(即 "长期收益的质量")。

作用:

Q 值是强化学习中 "决策" 的核心依据。智能体通过比较当前状态下所有可能动作的 Q 值,选择 Q 值最大的动作(即 "最优动作"),以最大化累积奖励。

网络设计有三点:

  1. 深度 Q 网络定义:使用 PyTorch 定义一个神经网络,用于近似 Q 值函数。
  2. 经验回放机制:实现经验回放缓冲区,用于存储智能体的经验,并随机采样进行训练。
  3. 使用 Epsilon-greedy 策略,是一种平衡探索(Exploration)与利用(Exploitation)的经典策略,核心解决 "如何避免智能体只依赖已知最优动作,而错过潜在更好策略" 的问题。

下面是代码

复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.table import Table

# 2048 游戏环境类
class Game2048:
    def __init__(self):
        self.board = np.zeros((4, 4), dtype=int)
        self.add_random_tile()
        self.add_random_tile()

    def add_random_tile(self):
        empty_cells = np.argwhere(self.board == 0)
        if len(empty_cells) > 0:
            index = random.choice(empty_cells)
            self.board[index[0], index[1]] = 2 if random.random() < 0.9 else 4

    def move_left(self):
        reward = 0
        new_board = np.copy(self.board)
        for row in range(4):
            line = new_board[row]
            non_zero = line[line != 0]
            merged = []
            i = 0
            while i < len(non_zero):
                if i + 1 < len(non_zero) and non_zero[i] == non_zero[i + 1]:
                    merged.append(2 * non_zero[i])
                    reward += 2 * non_zero[i]
                    i += 2
                else:
                    merged.append(non_zero[i])
                    i += 1
            new_board[row] = np.pad(merged, (0, 4 - len(merged)), 'constant')
        if not np.array_equal(new_board, self.board):
            self.board = new_board
            self.add_random_tile()
        return reward

    def move_right(self):
        self.board = np.fliplr(self.board)
        reward = self.move_left()
        self.board = np.fliplr(self.board)
        return reward

    def move_up(self):
        self.board = self.board.T
        reward = self.move_left()
        self.board = self.board.T
        return reward

    def move_down(self):
        self.board = self.board.T
        reward = self.move_right()
        self.board = self.board.T
        return reward

    def step(self, action):
        if action == 0:
            reward = self.move_left()
        elif action == 1:
            reward = self.move_right()
        elif action == 2:
            reward = self.move_up()
        elif action == 3:
            reward = self.move_down()
        done = not np.any(self.board == 0) and all([
            np.all(self.board[:, i] != self.board[:, i + 1]) for i in range(3)
        ]) and all([
            np.all(self.board[i, :] != self.board[i + 1, :]) for i in range(3)
        ])
        state = self.board.flatten()
        return state, reward, done

    def reset(self):
        self.board = np.zeros((4, 4), dtype=int)
        self.add_random_tile()
        self.add_random_tile()
        return self.board.flatten()

# 深度 Q 网络类
class DQN(nn.Module):
    def __init__(self, input_size, output_size):
        super(DQN, self).__init__()
        self.fc1 = nn.Linear(input_size, 128)
        self.fc2 = nn.Linear(128, 128)
        self.fc3 = nn.Linear(128, output_size)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

# 经验回放缓冲区类
class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = deque(maxlen=capacity)

    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        batch = random.sample(self.buffer, batch_size)
        states, actions, rewards, next_states, dones = zip(*batch)
        return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)

    def __len__(self):
        return len(self.buffer)

# 可视化函数
def visualize_board(board, ax):
    ax.clear()
    table = Table(ax, bbox=[0, 0, 1, 1])
    nrows, ncols = board.shape
    width, height = 1.0 / ncols, 1.0 / nrows

    # 定义颜色映射
    cmap = mcolors.LinearSegmentedColormap.from_list("", ["white", "yellow", "orange", "red"])

    for (i, j), val in np.ndenumerate(board):
        color = cmap(np.log2(val + 1) / np.log2(2048 + 1)) if val > 0 else "white"
        table.add_cell(i, j, width, height, text=val if val > 0 else "",
                       loc='center', facecolor=color)

    ax.add_table(table)
    ax.set_axis_off()
    plt.draw()
    plt.pause(0.1)

# 训练函数
def train():
    env = Game2048()
    input_size = 16
    output_size = 4
    model = DQN(input_size, output_size)
    target_model = DQN(input_size, output_size)
    target_model.load_state_dict(model.state_dict())
    target_model.eval()

    optimizer = optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.MSELoss()
    replay_buffer = ReplayBuffer(capacity=10000)
    batch_size = 32
    gamma = 0.99
    epsilon = 1.0
    epsilon_decay = 0.995
    epsilon_min = 0.01
    update_target_freq = 10

    num_episodes = 1000
    fig, ax = plt.subplots()
    for episode in range(num_episodes):
        state = env.reset()
        state = torch.FloatTensor(state).unsqueeze(0)
        done = False
        total_reward = 0
        while not done:
            visualize_board(env.board, ax)
            if random.random() < epsilon:
                action = random.randint(0, output_size - 1)
            else:
                q_values = model(state)
                action = torch.argmax(q_values, dim=1).item()

            next_state, reward, done = env.step(action)
            next_state = torch.FloatTensor(next_state).unsqueeze(0)
            replay_buffer.add(state.squeeze(0).numpy(), action, reward, next_state.squeeze(0).numpy(), done)

            if len(replay_buffer) >= batch_size:
                states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
                states = torch.FloatTensor(states)
                actions = torch.LongTensor(actions)
                rewards = torch.FloatTensor(rewards)
                next_states = torch.FloatTensor(next_states)
                dones = torch.FloatTensor(dones)
                q_values = model(states)
                # 得到每个状态下实际采取动作的 Q 值
                q_values = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
                next_q_values = target_model(next_states)
                # 得到下一个状态下最大的 Q 值
                next_q_values = next_q_values.max(1)[0]
                # 目标 Q 值
                target_q_values = rewards + gamma * (1 - dones) * next_q_values

                loss = criterion(q_values, target_q_values)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            state = next_state
            total_reward += reward

        if episode % update_target_freq == 0:
            target_model.load_state_dict(model.state_dict())

        epsilon = max(epsilon * epsilon_decay, epsilon_min)
        print(f"Episode {episode}: Total Reward = {total_reward}, Epsilon = {epsilon}")

    plt.close()

if __name__ == "__main__":
    train()

运行,会出现matplotlib可视化的2048操作过程,控制台输出当前训练的轮数等信息

相关推荐
MARS_AI_1 分钟前
4S 店使用大模型接电话,有效减少商机流失
人工智能·自然语言处理·交互·语音识别
三花AI18 分钟前
Google Cloud Platform 全球性宕机影响多家主流服务
人工智能
玩转AGI21 分钟前
面试篇-一文搞定 Agent
人工智能·程序员·llm
学无止境的子戌23 分钟前
RAG、FunctionCall和MCP的简单介绍
java·人工智能·后端
一个热爱生活的普通人26 分钟前
Firebase Studio:开启全栈 AI 应用开发的新篇章
人工智能·ai编程
houhuan12826 分钟前
楼宇自控新方向:电力载波技术——低成本、高兼容性的智能未来
大数据·运维·网络·人工智能·3d
阿里云云原生28 分钟前
AI Agent 的工程化被低估了
人工智能
DeepSeek忠实粉丝28 分钟前
Deepseek篇--开源技术3FS & smallpond详解
人工智能·程序员·llm
京东零售技术30 分钟前
京东率先开启“3D信息流时代” 让购物更有趣
人工智能