一款刚刚开源的TTS语音模型!25ms超低延迟支持实时对话,4种规格适配全场景!

在 TTS 领域,情感表达的自然度和实时性一直是两大挑战。传统模型往往在延迟和语音质量间难以平衡。

近两年 TTS 模型也发展的越来越好,也有越来越多的功能全面的 TTS 模型面世。

Orpheus TTS 是一款刚刚发布的开源 TTS 模型,它以其接近人类的自然情感表达、超低延迟的实时输出以及强大的零样本语音克隆能力,迅速成为开源社区关注的焦点。

不仅能生成流畅自然、充满情感的声音,还将延迟压缩到令人惊叹的 25-50 毫秒,完美适配实时对话场景。

并且提供了从 150M 到 3B 参数的四种型号,满足不同场景的需求。支持零样本语音克隆和灵活的情感控制,可让每个人都能轻松定制专属音色。

核心亮点

  • 超低延迟:支持实时流式推理,延迟低至约200毫秒,通过压缩最低可至 25-50 毫秒

  • 自然情感表达:支持丰富的情感和语调控制,支持高兴、悲伤、生气、困倦等多种情绪

  • 零样本语音克隆:无需预训练,仅需提供参考音频即可克隆目标音色

  • 提供 4 种模型规模:Medium (3B)、Small (1B)、Tiny (400M)、Nano (150M)

  • 端到端语音生成:还未上线,上线即可提升语音自然度、可控性及生成速度

快速使用

Orpheus TTS 的安装和使用过程简单,支持本地部署。

如果想要直接体验该TTS工具,HF平台上也有在线Demo可体验(需魔法)。

在线Demo:

huggingface.co/spaces/Moha...

本地部署步骤:

① 克隆项目

bash 复制代码
git clone https://github.com/canopyai/Orpheus-TTS.git
cd Orpheus-TTS

② 安装依赖

复制代码
pip install orpheus-speech

③ Python调用示例

ini 复制代码
from orpheus_tts import OrpheusModel
import wave
import time

model = OrpheusModel(model_name ="canopylabs/orpheus-tts-0.1-finetune-prod")
prompt = '''Man, the way social media has, um, completely changed how we interact is just wild, right? Like, we're all connected 24/7 but somehow people feel more alone than ever. And don't even get me started on how it's messing with kids' self-esteem and mental health and whatnot.'''

start_time = time.monotonic()
syn_tokens = model.generate_speech(
   prompt=prompt,
   voice="tara",
   )

with wave.open("output.wav", "wb") as wf:
   wf.setnchannels(1)
   wf.setsampwidth(2)
   wf.setframerate(24000)

   total_frames = 0
   chunk_counter = 0
   for audio_chunk in syn_tokens: # output streaming
      chunk_counter += 1
      frame_count = len(audio_chunk) // (wf.getsampwidth() * wf.getnchannels())
      total_frames += frame_count
      wf.writeframes(audio_chunk)
   duration = total_frames / wf.getframerate()

   end_time = time.monotonic()
   print(f"It took {end_time - start_time} seconds to generate {duration:.2f} seconds of audio")

写在最后

传统语音合成(TTS)系统面临三大核心挑战:情感表达生硬、推理延迟过高(普遍>500ms)、克隆音色需大量数据。

Orpheus TTS通过混合专家架构(MoE)与KV缓存优化,在150M到3B参数范围内实现:MOS评分达4.6、端到端延迟压至25ms、零样本语音克隆、超强情感控制。

适用于 AI 语音助手、游戏配音、有声读物、虚拟客服、智能语音交互等 多种应用,兼顾 高质量语音合成 & 实时交互体验,是当前最具潜力的开源 TTS 方案之一!

GitHub 项目地址:github.com/canopyai/Or...

相关推荐
struggle202516 分钟前
ebook2audiobook开源程序使用动态 AI 模型和语音克隆将电子书转换为带有章节和元数据的有声读物。支持 1,107+ 种语言
人工智能·开源·自动化
深空数字孪生19 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
lgily-122521 分钟前
常用的设计模式详解
java·后端·python·设计模式
标贝科技33 分钟前
标贝科技:大模型领域数据标注的重要性与标注类型分享
数据库·人工智能
aminghhhh41 分钟前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
格林威43 分钟前
Baumer工业相机堡盟工业相机的工业视觉是否可以在室外可以做视觉检测项目
c++·人工智能·数码相机·计算机视觉·视觉检测
陈苏同学1 小时前
MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
人工智能·python·机器学习·数学建模·机器人·自动驾驶
mahuifa1 小时前
python实现usb热插拔检测(linux)
linux·服务器·python
努力毕业的小土博^_^2 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
MyhEhud2 小时前
kotlin @JvmStatic注解的作用和使用场景
开发语言·python·kotlin