使用OpenCV进行图像处理:边界填充、阈值处理

引言

OpenCV(Open Source Computer Vision Library)是一个功能强大的开源计算机视觉库,广泛应用于图像处理、视频分析、物体检测等领域。本文将重点介绍OpenCV中的三种常见图像处理技术:边界填充、阈值处理。通过这些技术,你可以更好地处理图像中的边缘、噪声以及对比度问题。

1. 边界填充(Padding)

在图像处理中,边界填充是一种常见的技术,用于在图像的边缘添加额外的像素。这在卷积操作(如滤波)中尤为重要,因为卷积核在图像边缘无法完全覆盖时,边界填充可以避免图像尺寸的缩小。

复制代码
cv2.copyMakeBorder()是OpenCV库中的一个函数,用于给图像添加额外的边界(padding)。

copyMakeBorder(src: UMat, top: int, bottom: int, left: int, right: int, borderType: int, dst: UMat | None = ..., value: cv2.typing.Scalar = ...)
 它有以下几个参数:
 src:要扩充边界的原始图像。
 top, bottom, left, right:相应方向上的边框宽度。

 borderType:定义要添加边框的类型,它可以是以下的一种:
 cv2.BORDER_CONSTANT:添加的边界框像素值为常数(需要额外再给定一个参数)。
 cv2.BORDER_REFLECT:添加的边框像素将是边界元素的镜面反射 (交界处也复制了)
 cv2.BORDER_REFLECT_101 或 cv2.BORDER_DEFAULT:和上面类似,但是有一些细微的不同
 cv2.BORDER_REPLICATE:使用最边界的像素值代替
 cv2.BORDER_WRAP:上下左右边依次替换
python 复制代码
import cv2
ys = cv2.imread('yueshan.png')
ys=cv2.resize(ys,dsize=None,fx=0.5,fy=0.5)  #  图片缩放
ys=cv2.resize(ys,(640,480))
top,bottom,left,right = 50,50,50,50

constant =cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_CONSTANT,value=(229,25,80))
reflect = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REFLECT101)
replicate = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_REPLICATE)
wrap = cv2.copyMakeBorder(ys,top,bottom,left,right,borderType=cv2.BORDER_WRAP)
#
cv2.imshow('yuantu', ys)
cv2.waitKey(0)
cv2.imshow('CONSTANT', constant)
cv2.waitKey(0)
cv2.imshow('REFLECT', reflect)
cv2.waitKey(0)
cv2.imshow('REFLECT_101', reflect101)
cv2.waitKey(0)
cv2.imshow('REPLICATE', replicate)
cv2.waitKey(0)
cv2.imshow('WRAP', wrap)
cv2.waitKey(0)

2. 阈值处理(Thresholding)

阈值处理是一种将图像转换为二值图像的技术,通过设定一个阈值,将像素值分为两类:大于阈值的像素设置为最大值(如255),小于阈值的像素设置为0。OpenCV提供了多种阈值处理方法,包括全局阈值、自适应阈值和Otsu's二值化。

常用方法:

示例代码

python 复制代码
import cv2
image = cv2.imread('zl.png',0) #灰度图,
ret, binary = cv2.threshold(image, 175, 255, cv2.THRESH_BINARY)
ret1, binaryinv = cv2.threshold(image, 175, 255, cv2.THRESH_BINARY_INV)
ret2, trunc = cv2.threshold(image, 175, 255, cv2.THRESH_TRUNC)
ret3, tozero = cv2.threshold(image, 175, 255, cv2.THRESH_TOZERO)
ret4, tozeroinv = cv2.threshold(image, 175, 255, cv2.THRESH_TOZERO_INV)

cv2.imshow('gray', image)  #原灰度图
cv2.waitKey(0)
cv2.imshow('binary', binary)  #偏白的变纯白,偏黑的变纯黑
cv2.waitKey(0)
cv2.imshow('binaryinv', binaryinv)  #偏白的变纯黑,偏黑的变纯白
cv2.waitKey(0)
cv2.imshow('trunc', trunc)   #白色变得一样灰蒙蒙,偏黑的不变
cv2.waitKey(0)
cv2.imshow('tozero', tozero)  #偏白色不变,偏黑的就变纯黑
cv2.waitKey(0)
cv2.imshow( 'tozeroinv', tozeroinv)   #偏白色变纯黑,偏黑的不变
cv2.waitKey(0)

总结

本文介绍了OpenCV中的三种常见图像处理技术:边界填充、阈值处理。这些技术是图像处理的基础,广泛应用于去噪、边缘检测、图像分割等任务中。通过掌握这些方法,你可以更好地处理图像数据,并为后续的计算机视觉任务打下坚实的基础。

相关推荐
kngines15 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0718 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全25 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王30 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天40 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03071 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
阿蒙Amon1 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频
荔枝吻2 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901062 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能