Transformers x SwanLab:可视化NLP模型训练(2025最新版)

HuggingFace 的 Transformers 是目前最流行的深度学习训框架之一(100k+ Star),现在主流的大语言模型(LLaMa系列、Qwen系列、ChatGLM系列等)、自然语言处理模型(Bert系列)等,都在使用Transformers来进行预训练、微调和推理。

SwanLab 是一个深度学习实验管理与训练可视化工具,融合了Weights & Biases与Tensorboard的特点,能够方便地进行 训练可视化、多实验对比、超参数记录、大型实验管理和团队协作,并支持用网页链接的方式分享你的实验。

你可以使用Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

transformers>=4.50.0 的版本,已官方集成了SwanLab

如果你的版本低于4.50.0,请使用SwanLabCallback集成

1. 一行代码完成集成

只需要在你的训练代码中,找到TrainingArguments部分,添加report_to="swanlab"参数,即可完成集成。

python 复制代码
from transformers import TrainingArguments, Trainer

args = TrainingArguments(
    ...,
    report_to="swanlab" # [!code ++]
)

trainer = Trainer(..., args=args)

2. 自定义项目名

默认下,项目名会使用你运行代码的目录名

如果你想自定义项目名,可以设置SWANLAB_PROJECT环境变量:

::: code-group

python 复制代码
import os
os.environ["SWANLAB_PROJECT"]="qwen2-sft"
bash 复制代码
export SWANLAB_PROJECT="qwen2-sft"
bash 复制代码
set SWANLAB_PROJECT="qwen2-sft"

:::

3. 案例代码:Bert文本分类

python 复制代码
import evaluate
import numpy as np
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments


def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)


dataset = load_dataset("yelp_review_full")

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

tokenized_datasets = dataset.map(tokenize_function, batched=True)

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))

metric = evaluate.load("accuracy")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

training_args = TrainingArguments(
    output_dir="test_trainer",
    num_train_epochs=3,
    logging_steps=50,
    report_to="swanlab", # [!code ++]
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    compute_metrics=compute_metrics,
)

trainer.train()

4. SwanLabCallback集成

如果你使用的是Transformers<4.50.0的版本,或者你希望更灵活地控制SwanLab的行为,则可以使用SwanLabCallback集成。

4.1 引入SwanLabCallback

python 复制代码
from swanlab.integration.transformers import SwanLabCallback

SwanLabCallback是适配于Transformers的日志记录类。

SwanLabCallback可以定义的参数有:

  • project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
  • 你也可以在外部通过swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。

4.2 传入Trainer

python 复制代码
from swanlab.integration.transformers import SwanLabCallback
from transformers import Trainer, TrainingArguments

...

# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(project="hf-visualization")

trainer = Trainer(
    ...
    # 传入callbacks参数
    callbacks=[swanlab_callback],
)

trainer.train()

4.3 完整案例代码

python 复制代码
import evaluate
import numpy as np
import swanlab
from swanlab.integration.transformers import SwanLabCallback
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments


def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)


dataset = load_dataset("yelp_review_full")

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

tokenized_datasets = dataset.map(tokenize_function, batched=True)

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))

metric = evaluate.load("accuracy")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

training_args = TrainingArguments(
    output_dir="test_trainer",
    # 如果只需要用SwanLab跟踪实验,则将report_to参数设置为"none"
    report_to="none",
    num_train_epochs=3,
    logging_steps=50,
)

# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(experiment_name="TransformersTest")

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    compute_metrics=compute_metrics,
    # 传入callbacks参数
    callbacks=[swanlab_callback],
)

trainer.train()

4.4 GUI效果展示

超参数自动记录:

指标记录:

4.5 拓展:增加更多回调

试想一个场景,你希望在每个epoch结束时,让模型推理测试样例,并用swanlab记录推理的结果,那么你可以创建一个继承自SwanLabCallback的新类,增加或重构生命周期函数。比如:

python 复制代码
class NLPSwanLabCallback(SwanLabCallback):    
    def on_epoch_end(self, args, state, control, **kwargs):
        test_text_list = ["example1", "example2"]
        log_text_list = []
        for text in test_text_list:
            result = model(text)
            log_text_list.append(swanlab.Text(result))
            
        swanlab.log({"Prediction": test_text_list}, step=state.global_step)

上面是一个在NLP任务下的新回调类,增加了on_epoch_end函数,它会在transformers训练的每个epoch结束时执行。

查看全部的Transformers生命周期回调函数:链接

5. 环境变量

参考:HuggingFace Docs: transformers.integrations.SwanLabCallback

相关推荐
__Benco2 分钟前
OpenHarmony子系统开发 - init启动引导组件(一)
人工智能·harmonyos
独行soc10 分钟前
2025年渗透测试面试题总结-某美团-安全工程师实习(题目+回答)
java·数据库·python·安全·面试·职场和发展·红蓝攻防
牛奶18 分钟前
浅见:在AI浪潮中的思考与前行
前端·人工智能·openai
A宝18 分钟前
🎉🎉🎉决策树算法详解:从西瓜分类到实战应用
机器学习
闲人编程25 分钟前
OpenCV像素级操作核心技术解析
python·opencv·图像识别
2301_7644413329 分钟前
年龄预测识别模型训练python代码
人工智能·深度学习·机器学习
闲人编程30 分钟前
OpenCV色彩空间转换深度解析
python·opencv·图像识别
James. 常德 student35 分钟前
从深度学习角度看线性代数
深度学习·线性代数
阿正的梦工坊1 小时前
Categorical分布(分类分布):深度学习中的离散建模利器
深度学习·分类·数据挖掘
小白的高手之路1 小时前
Pytorch中Tensorboard的学习
人工智能·pytorch·python·深度学习·学习·数据可视化