矩阵指数的定义和基本性质

1. 矩阵指数的定义

矩阵指数 e A t e^{\boldsymbol{A}t} eAt 定义为幂级数的形式:

e A t = ∑ k = 0 ∞ ( A t ) k k ! e^{\boldsymbol{A}t} = \sum_{k=0}^\infty \frac{(\boldsymbol{A}t)^k}{k!} eAt=k=0∑∞k!(At)k

当 A \boldsymbol{A} A 为 n × n n \times n n×n 方阵时,该级数是有限项的收敛矩阵级数。

2. 初始条件

矩阵指数在 t = 0 t=0 t=0 时为单位矩阵:

e A ⋅ 0 = I e^{\boldsymbol{A} \cdot 0} = \boldsymbol{I} eA⋅0=I

3. 矩阵指数的导数

矩阵指数的导数与矩阵本身的乘积满足以下关系:

d d t e A t = A e A t \frac{\mathrm{d}}{\mathrm{d}t} e^{\boldsymbol{A}t} = \boldsymbol{A} e^{\boldsymbol{A}t} dtdeAt=AeAt

4. 逆矩阵

矩阵指数的逆矩阵为负指数:

( e A t ) − 1 = e − A t \left(e^{\boldsymbol{A}t}\right)^{-1} = e^{-\boldsymbol{A}t} (eAt)−1=e−At

这等价于在级数定义中将 A \boldsymbol{A} A 的符号取反。

5. 矩阵指数的乘积(换元法)

对于任意标量 t 1 t_1 t1 和 t 2 t_2 t2,矩阵指数满足:

e A t 1 e A t 2 = e A ( t 1 + t 2 ) e^{\boldsymbol{A}t_1} e^{\boldsymbol{A}t_2} = e^{\boldsymbol{A}(t_1 + t_2)} eAt1eAt2=eA(t1+t2)

特别地,当 t 2 = − t 1 t_2 = -t_1 t2=−t1 时,得到:

e A t e − A t = I e^{\boldsymbol{A}t} e^{-\boldsymbol{A}t} = \boldsymbol{I} eAte−At=I

6. 矩阵相似性

如果矩阵 A \boldsymbol{A} A 和 B \boldsymbol{B} B 相似(即 B = P − 1 A P \boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} B=P−1AP),则:

e B t = P − 1 e A t P e^{\boldsymbol{B}t} = \boldsymbol{P}^{-1} e^{\boldsymbol{A}t} \boldsymbol{P} eBt=P−1eAtP

7. 对角化情况

如果矩阵 A \boldsymbol{A} A 可对角化,即存在可逆矩阵 P \boldsymbol{P} P 和对角矩阵 Λ \boldsymbol{\Lambda} Λ 使得:

A = P Λ P − 1 \boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} A=PΛP−1

则:

e A t = P e Λ t P − 1 e^{\boldsymbol{A}t} = \boldsymbol{P} e^{\boldsymbol{\Lambda}t} \boldsymbol{P}^{-1} eAt=PeΛtP−1

其中:

e Λ t = diag ( e λ 1 t , e λ 2 t , ... , e λ n t ) e^{\boldsymbol{\Lambda}t} = \text{diag}\left(e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t}\right) eΛt=diag(eλ1t,eλ2t,...,eλnt)

8. 级数截断

当矩阵 A \boldsymbol{A} A 为幂零矩阵(即某次幂后全零,如 A k = 0 \boldsymbol{A}^k = 0 Ak=0),矩阵指数成为一个有限项的多项式。

9. 复合性质

如果矩阵 A \boldsymbol{A} A 和 B \boldsymbol{B} B 满足 [ A , B ] = A B − B A = 0 [\boldsymbol{A}, \boldsymbol{B}] = \boldsymbol{A}\boldsymbol{B} - \boldsymbol{B}\boldsymbol{A} = 0 [A,B]=AB−BA=0(即它们可交换),则:

e ( A + B ) t = e A t e B t e^{(\boldsymbol{A} + \boldsymbol{B})t} = e^{\boldsymbol{A}t} e^{\boldsymbol{B}t} e(A+B)t=eAteBt

10. 拉普拉斯变换

矩阵指数的拉普拉斯变换为:

L [ e A t ] = ( s I − A ) − 1 \mathcal{L}[e^{\boldsymbol{A}t}] = (s\boldsymbol{I} - \boldsymbol{A})^{-1} L[eAt]=(sI−A)−1

其中 I \boldsymbol{I} I 为单位矩阵。

这些性质为矩阵指数在理论分析和实际计算中提供了强大的工具,尤其是在线性系统分析和微分方程的求解中。

相关推荐
峙峙峙19 小时前
线性代数--AI数学基础复习
人工智能·线性代数
我爱C编程21 小时前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测
CVer儿1 天前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
张晓~183399481211 天前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)31 天前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷2 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
YuTaoShao2 天前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
luofeiju3 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio3 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl3 天前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl