【每日算法】Day 6-1:哈希表从入门到实战——高频算法题(C++实现)

摘要 :掌握高频数据结构!今日深入解析哈希表的核心原理与设计实现,结合冲突解决策略与大厂高频真题,彻底掌握O(1)时间复杂度的数据访问技术。

一、哈希表核心思想

哈希表(Hash Table) 是一种基于键值对的高效数据结构,通过哈希函数将键映射到存储位置,核心特性:

  • 平均时间复杂度:插入、删除、查找均为O(1)

  • 冲突处理:开放寻址法、链地址法等策略

  • 负载因子:哈希表性能的关键指标(元素数/桶数)

应用场景

  • 快速数据检索

  • 去重操作

  • 缓存系统设计(如LRU Cache)

二、哈希表实现原理

1. 哈希函数设计

理想哈希函数特性

  • 确定性:相同键的哈希值始终相同

  • 均匀性:键值均匀分布到各个桶

  • 高效性:计算速度快

常见哈希函数

  • 除法哈希:hash(key) = key % capacity

  • 乘法哈希:利用黄金分割点

  • 多项式哈希:用于字符串处理

cpp 复制代码
// 字符串哈希示例(多项式滚动哈希)
size_t stringHash(const string& s, size_t mod = 1e9+7) {
    size_t hash = 0;
    const size_t base = 31; // 常用质数基数
    for (char c : s) {
        hash = (hash * base + c) % mod;
    }
    return hash;
}

2. 冲突解决策略

动态示意图

链地址法示意图

策略1:链地址法(Separate Chaining)

cpp 复制代码
// 哈希表节点定义
template <typename K, typename V>
struct HashNode {
    K key;
    V value;
    HashNode* next;
    HashNode(K k, V v) : key(k), value(v), next(nullptr) {}
};

// 哈希表类框架
template <typename K, typename V>
class HashMap {
private:
    vector<HashNode<K,V>*> buckets;
    size_t capacity;
    size_t size;
    
    size_t hashFunction(K key) {
        return hash<K>{}(key) % capacity;
    }
    
public:
    HashMap(size_t cap = 16) : capacity(cap), size(0) {
        buckets.resize(cap, nullptr);
    }
    
    // 插入、查找、删除操作实现...
};

策略2:开放寻址法(Open Addressing)

cpp 复制代码
// 线性探测插入实现
template <typename K, typename V>
void HashMap<K,V>::put(K key, V value) {
    size_t index = hashFunction(key);
    while (buckets[index] != nullptr) {
        if (buckets[index]->key == key) { // 已存在则更新
            buckets[index]->value = value;
            return;
        }
        index = (index + 1) % capacity; // 线性探测
    }
    buckets[index] = new HashNode<K,V>(key, value);
    size++;
}

三、哈希表操作实现(C++)

1. 插入操作(链地址法)

cpp 复制代码
template <typename K, typename V>
void HashMap<K,V>::put(K key, V value) {
    size_t index = hashFunction(key);
    HashNode<K,V>* node = buckets[index];
    while (node) { // 检查键是否已存在
        if (node->key == key) {
            node->value = value;
            return;
        }
        node = node->next;
    }
    // 头插法添加新节点
    HashNode<K,V>* newNode = new HashNode<K,V>(key, value);
    newNode->next = buckets[index];
    buckets[index] = newNode;
    size++;
}

2. 查找操作、

cpp 复制代码
template <typename K, typename V>
V HashMap<K,V>::get(K key) {
    size_t index = hashFunction(key);
    HashNode<K,V>* node = buckets[index];
    while (node) {
        if (node->key == key) {
            return node->value;
        }
        node = node->next;
    }
    throw out_of_range("Key not found");
}

3. 删除操作

cpp 复制代码
template <typename K, typename V>
void HashMap<K,V>::remove(K key) {
    size_t index = hashFunction(key);
    HashNode<K,V>* node = buckets[index];
    HashNode<K,V>* prev = nullptr;
    
    while (node) {
        if (node->key == key) {
            if (prev) prev->next = node->next;
            else buckets[index] = node->next;
            delete node;
            size--;
            return;
        }
        prev = node;
        node = node->next;
    }
}

四、复杂度与优化

操作 平均情况 最坏情况
插入 O(1) O(n)
删除 O(1) O(n)
查找 O(1) O(n)

优化策略

  • 负载因子监控:当元素数/桶数超过阈值(如0.75),触发扩容

  • 动态扩容:容量扩展为原来的2倍,并重新哈希所有元素

  • 良好的哈希函数选择:减少冲突,提升性能

相关推荐
Phoebe鑫1 分钟前
数据结构每日一题day5(顺序表)★★★★★
数据结构·算法
学习是种信仰啊9 分钟前
QT计算器开发
开发语言·c++·qt
SNAKEpc1213813 分钟前
在MFC中使用Qt(四):使用属性表(Property Sheet)实现自动化Qt编译流程
c++·qt·mfc
island131417 分钟前
【#2】介绍第三方库
c++·rpc·json
郭涤生25 分钟前
Chapter 2:A Tale of Two Values_《clean architecture》notes
开发语言·c++·笔记
<但凡.43 分钟前
C++修炼:string类的使用
开发语言·c++·算法
HR Zhou1 小时前
群体智能优化算法-大猩猩部落优化算法(Gorilla Troops Optimizer, GTO,含Matlab源代码)
算法·机器学习·数学建模·matlab·群体智能优化
老马啸西风1 小时前
Neo4j GDS-06-neo4j GDS 库中社区检测算法介绍
网络·算法·云原生·中间件·neo4j
地平线开发者2 小时前
精度调优|conv+depth2space 替换 resize 指导
算法·自动驾驶
努力学习的小廉2 小时前
【C++】 —— 笔试刷题day_9
开发语言·c++·代理模式