ROS2 部署大语言模型节点

4GB GPU的DeepSeek-Coder 1.3B模型,并且它已经被量化或优化过。以下是具体的步骤:

安装必要的依赖项:

复制代码
pip install transformers torch grpcio googleapis-common-protos

创建一个新的ROS 2包:

复制代码
cd ~/ros2_ws/src
ros2 pkg create --build-type ament_python llm_ros2_node --dependencies rclpy std_msgs grpcio googleapis-common-protos torch transformers

编辑setup.py文件以包含所需的依赖项:

复制代码
from setuptools import setup

package_name = 'llm_ros2_node'

setup(
    name=package_name,
    version='0.0.0',
    packages=[package_name],
    data_files=[
        ('share/ament_index/resource_index/packages', ['resource/' + package_name]),
        ('share/' + package_name, ['package.xml']),
    ],
    install_requires=['setuptools'],
    zip_safe=True,
    maintainer='your_name',
    maintainer_email='your_email@example.com',
    description='TODO: Package description',
    license='Apache License 2.0',
    tests_require=['pytest'],
    entry_points={
        'console_scripts': [
            'llm_node = llm_ros2_node.llm_node:main',
        ],
    },
)

编写ROS 2节点代码:在这个节点中,我们将订阅一个话题并发送消息到本地的大语言模型,然后将结果发布到另一个话题。

复制代码
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

class LLMNode(Node):
    def __init__(self):
        super().__init__('llm_node')
        self.subscription = self.create_subscription(
            String,
            'input_text',
            self.listener_callback,
            10)
        self.publisher_ = self.create_publisher(String, 'output_text', 10)

        # Load the DeepSeek-Coder model and tokenizer
        self.model_name_or_path = "path/to/deepseek-coder-1.3b-optimized"
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name_or_path).to(self.device)
        self.model.eval()

    def listener_callback(self, msg):
        self.get_logger().info(f'Received input text: {msg.data}')
        response = self.call_llm(msg.data)
        self.publisher_.publish(String(data=response))

    def call_llm(self, prompt):
        inputs = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
        outputs = self.model.generate(inputs, max_length=50, num_return_sequences=1)
        reply = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        return reply

def main(args=None):
    rclpy.init(args=args)
    llm_node = LLMNode()
    rclpy.spin(llm_node)
    llm_node.destroy_node()
    rclpy.shutdown()

if __name__ == '__main__':
    main()
相关推荐
天远Date Lab3 分钟前
Java微服务实战:聚合型“全能小微企业报告”接口的调用与数据清洗
java·大数据·python·微服务
ss2735 分钟前
阻塞队列:ArrayBlockingQueue如何用Lock与Condition实现高效并发控制
开发语言·python
Elastic 中国社区官方博客7 分钟前
Elasticsearch:构建一个 AI 驱动的电子邮件钓鱼检测
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
IT_陈寒8 分钟前
Vite 5大优化技巧:让你的构建速度飙升50%,开发者都在偷偷用!
前端·人工智能·后端
l1t13 分钟前
利用DeepSeek计算abcde五人排成一队,要使c在ab 之间,有几种排法
人工智能·组合数学·deepseek
阿拉斯攀登13 分钟前
电子签名:笔迹特征比对核心算法详解
人工智能·算法·机器学习·电子签名·汉王
说私域15 分钟前
基于开源链动2+1模式、AI智能名片与S2B2C商城小程序的运营创新研究
人工智能·小程序
_OP_CHEN15 分钟前
【Python基础】(三)Python 语法基础进阶:条件循环 + 实战案例,从入门到精通的核心跳板
开发语言·python·python入门·条件语句·循环语句·python基础语法
weixin_4462608518 分钟前
Agentic Frontend: 灵活的AI助手与聊天机器人构建平台
人工智能·机器人
墨_浅-18 分钟前
教育/培训行业智能体应用分类及知识库检索模型微调
人工智能·分类·数据挖掘