基于Python的自然语言处理系列(60):使用 LangChain 构建 Multi-Vector Retriever 进行文档检索

在 NLP 和 AI 领域,基于嵌入(Embeddings)进行文档检索已成为一种高效的解决方案。本文介绍如何使用 LangChain 构建 Multi-Vector Retriever,实现对长文档的分块索引和高效检索。

1. 环境准备

首先,我们需要安装相关依赖库。

复制代码
pip install langchain chromadb torch transformers

2. 加载文档并进行预处理

我们先使用 TextLoader 读取多个文档,并进行分块处理,以便后续向量化索引。

复制代码
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

loaders = [
    TextLoader("../docs/txt/paul_graham_essay.txt"),
    TextLoader("../docs/txt/state_of_the_union.txt"),
]
docs = []
for loader in loaders:
    docs.extend(loader.load())

# 设定 chunk size 以确保文档分块合理
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000)
docs = text_splitter.split_documents(docs)

3. 选择嵌入模型

这里我们使用 HuggingFaceInstructEmbeddings 进行向量化,支持 GPU 加速。

复制代码
from langchain.embeddings import HuggingFaceInstructEmbeddings
import torch

embedding_model = HuggingFaceInstructEmbeddings(
    model_name='hkunlp/instructor-base',
    model_kwargs={'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')}
)

4. 构建向量存储与检索器

使用 Chroma 作为向量数据库,并配置 MultiVectorRetriever

复制代码
from langchain.vectorstores import Chroma
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
import uuid

# 创建向量存储
vectorstore = Chroma(collection_name="full_documents", embedding_function=embedding_model)

# 使用 InMemoryStore 作为存储层
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(vectorstore=vectorstore, docstore=store, id_key=id_key)

# 生成唯一文档 ID
doc_ids = [str(uuid.uuid4()) for _ in docs]

5. 进一步拆分文档并存储

使用 RecursiveCharacterTextSplitter 进一步拆分子文档,并添加到向量存储中。

复制代码
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)

sub_docs = []
for i, doc in enumerate(docs):
    _id = doc_ids[i]
    _sub_docs = child_text_splitter.split_documents([doc])
    for _doc in _sub_docs:
        _doc.metadata[id_key] = _id
    sub_docs.extend(_sub_docs)

retriever.vectorstore.add_documents(sub_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))

6. 进行相似度搜索

我们可以使用 similarity_search 进行相似内容检索。

复制代码
retriever.vectorstore.similarity_search("justice breyer")

或者使用 get_relevant_documents 查找相关文档:

复制代码
retriever.get_relevant_documents("retriever")

7. 结论

通过 LangChain 的 Multi-Vector Retriever,我们能够高效地处理长文档并实现精准检索。结合 HuggingFace 的嵌入模型和 Chroma 向量数据库,可以实现快速的文本相似度匹配,非常适用于 法律文档、技术文档 等长文本搜索任务。

如果你对 LangChain 的更多应用感兴趣,欢迎在评论区交流!

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

相关推荐
KG_LLM图谱增强大模型21 分钟前
突破AI助手成本壁垒:知识图谱思维架构让小模型实现大性能
人工智能·架构·大模型·知识图谱·graphrag
喜欢吃豆22 分钟前
[特殊字符] 深入解构 Assistants API:从“黑盒”抽象到“显式”控制的架构演进与终极指南
网络·人工智能·自然语言处理·架构·大模型
深圳南柯电子30 分钟前
深圳南柯电子|医疗电子EMC整改:助医疗器械安全稳定的关键环节
网络·人工智能·安全·互联网·实验室·emc
张较瘦_30 分钟前
[论文阅读] AI + 职业教育 | 从框架到实践:职业院校教师人工智能素养提升的完整方案
论文阅读·人工智能
得贤招聘官1 小时前
AI 重塑招聘格局,传统招聘模式面临转型挑战
人工智能
九章云极AladdinEdu1 小时前
量子机器学习框架设计:基于Cirq的变分量子算法实现
人工智能·量子机器学习·cirq框架·变分量子算法·量子卷积·混合神经网络·参数化量子电路
平和男人杨争争1 小时前
SNN(TTFS)论文阅读——LC-TTFS
论文阅读·人工智能·神经网络·机器学习
我要学脑机2 小时前
prompt[ai开发项目指示]
人工智能·prompt
天天进步20152 小时前
Python全栈项目:结合Puppeteer和AI模型操作浏览器
开发语言·人工智能·python
星座5282 小时前
AI+CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·ai·气候·水文·cmip6