一、下载
二、简介作用:
|-----------|-------------------|----------------|-----------------|--------|------|
| 模型 | 每个参数占用的字节大小 | 模型大小 | 模型大小 | 层数 | 头数 |
| GPT-1 | 4 个字节的 FP32 精度浮点数 | 117M | 446MB | 12 | 12 |
| GPT-2 | 2 个字节的 FP16 | 1.5亿到1.75亿 | 0.5GB到1.5GB | 48 | 16 |
| GPT-3 | 2 个字节的 FP16 | 1.75万亿(17500亿) | 350GB | 175 | 96个头 |
BERT(Bidirectional Encoder Representations from Transformers)
针对中文语言,HuggingFace 团队推出了 bert-base-chinese 模型,提供语言处理能力。
Transformers提供两大类的模型架构,一类用于语言生成NLG任务
,比如GPT、GPT-2、Transformer-XL、XLNet和XLM,
另一类主要用于**语言理解任务
** ,如Bert、DistilBert、RoBERTa、XLM.
三、环境依赖
pip install transformers==4.20.0
四、实践
1、 vocab.txt 是已经设定好的词表

2、分词编码
利用transformers库中的BertTokenizer实现分词编码
python
from transformers import BertTokenizer#111
bert_name = './bert-base-chinese'
tokenizer = BertTokenizer.from_pretrained(bert_name)
text = '窗前明月光,'
input_ids = tokenizer.encode(
text,#需要编码的文本;
add_special_tokens=True,#是否添加特殊token,即CLS分类token和SEP分隔token;
max_length=128,#文本的最大长度
truncation=True,#使用truncation=True来明确地将示例截断为最大长度。
padding='max_length',#将批次中所有序列填充到最长序列的长度
return_tensors='pt'# 返回的tensor类型,有4种为 ['pt', 'tf', 'np', 'jax'] 分别代表 pytorch tensor、tensorflow tensor、int32数组形式和 jax tensor;
)
print('text:\n', text)
print('text字符数:', len(text))
print('input_ids:\n', input_ids)
print('input_ids大小:', input_ids.size())

3、特殊标记
整个词表的大小为21128个字,共有5种特殊token标记:
PAD\]: 填充标记,编码为0; \[UNK\]: 未知字符标记,即该字不在所定义的词表中,编码为100; \[CLS\]: 分类标记,蕴含整个文本的含义,编码为101; \[SEP\]: 分隔字符标记,用于断开两句话,编码为102; \[MASK\]: 掩码标记,该字被遮挡,编码为103; *** ** * ** *** ### 4、补充: 某些transformers版本 或者会产生一些提醒,但是可以正常运行,我们可以加上以下语句来清除警告 > from transformers import logging > > logging.set_verbosity_error()