如何使用 LLaMA-Factory 微调 LLaMA3

【LLaMa3微调】使用 LLaMA-Factory 微调LLaMA3

  1. 实验环境
    1.1 机器
    • 操作系统:Windows 10 或 Ubuntu
    • PyTorch 版本:2.1.0
    • Python 版本:3.10(针对Ubuntu 22.04)
    • Cuda 版本:12.1
    • GPU 配置:p100 (16GB) * 2
    • CPU 配置:12 vCPU Intel® Xeon® Platinum 8352V CPU @ 2.10GHz

1.2 基座模型

  • 基于中文数据训练过的 LLaMA3 8B 模型:shenzhi-wang/Llama3-8B-Chinese-Chat

  • 可选配置:hf 国内镜像站,使用以下命令安装和配置:

    bash 复制代码
    pip install -U huggingface_hub
    export HF_ENDPOINT=https://hf-mirror.com
    huggingface-cli download --resume-download shenzhi-wang/Llama3-8B-Chinese-Chat --local-dir /root/autodl-tmp/models/Llama3-8B-Chinese-Chat1
  1. LLaMA-Factory 框架

2.1 安装

  • 使用以下命令克隆并安装LLaMA-Factory:

    bash 复制代码
    git clone https://github.com/hiyouga/LLaMA-Factory.git
    cd LLaMA-Factory
    pip install -e .

2.2 准备训练数据

  • 训练数据示例:fruozhiba_qaswift_train.json,可以去魔搭社区下载

  • 将训练数据放置在 LLaMA-Factory/data/ 目录下,例如:LLaMA-Factory/data/ruozhiba_qaswift_train.json

  • 修改数据注册文件:LLaMA-Factory/data/dataset_info.json,添加数据集的配置信息,例如:

    json 复制代码
    "fintech": {
      "file_name": "ruozhiba_qaswift_train.json",
      "columns": {
        "prompt": "instruction",
        "query": "input",
        "response": "output",
        "history": "history"
      }
    }

2.3 启动 Web UI

在 LLaMA-Factory 目录下执行以下命令启动 Web UI:
bash cd LLaMA-Factory llamafactory-cli webui

2.4 微调模型

使用 Web UI 或命令行进行微调。

命令行微调示例:构建配置文件 cust/train_llama3_lora_sft.yaml,内容示例如下:

复制代码
 cutoff_len: 1024
 dataset: ruozhiba_qaswift_train
 dataset_dir: data
 do_train: true
 finetuning_type: lora
 flash_attn: auto
 fp16: true
 gradient_accumulation_steps: 8
 learning_rate: 0.0002
 logging_steps: 5
 lora_alpha: 16
 lora_dropout: 0
 lora_rank: 8
 lora_target: q_proj,v_proj
 lr_scheduler_type: cosine
 max_grad_norm: 1.0
 max_samples: 1000
 model_name_or_path: /root/autodl-tmp/models/Llama3-8B-Chinese-Chat
 num_train_epochs: 10.0
 optim: adamw_torch
 output_dir: saves/LLaMA3-8B-Chinese-Chat/lora/train_XXXX-XX-XX-XX-XX-XX
 packing: false
 per_device_train_batch_size: 2
 plot_loss: true
 preprocessing_num_workers: 16
 report_to: none
 save_steps: 100
 stage: sft
 template: llama3
 use_unsloth: true
 warmup_steps: 0

使用以下命令执行微调

复制代码
 ```bash
 llamafactory-cli train cust/train_llama3_lora_sft.yaml
 ```
相关推荐
cainiao0806056 小时前
《大模型微调实战:Llama 3.0全参数优化指南》
llama
鸿蒙布道师6 小时前
英伟达开源Llama-Nemotron系列模型:14万H100小时训练细节全解析
深度学习·神经网络·opencv·机器学习·自然语言处理·数据挖掘·llama
青花瓷11 小时前
llama-Factory不宜直接挂接Ollama的大模型
人工智能·大模型·agent·llama·智能体
连环喷嚏虾_11 小时前
服务器配置llama-factory问题解决
llama
白熊1881 天前
【大模型】使用 LLaMA-Factory 进行大模型微调:从入门到精通
人工智能·大模型·llama
AI大模型顾潇2 天前
[特殊字符] Milvus + LLM大模型:打造智能电影知识库系统
数据库·人工智能·机器学习·大模型·llm·llama·milvus
陈奕昆2 天前
4.1【LLaMA-Factory 实战】医疗领域大模型:从数据到部署的全流程实践
llama·大模型微调实战
OJAC近屿智能2 天前
英伟达发布Llama-Nemotron系列新模型,性能超越DeepSeek-R1
大数据·人工智能·ui·aigc·llama
陈奕昆2 天前
4.2【LLaMA-Factory实战】金融财报分析系统:从数据到部署的全流程实践
人工智能·金融·llama·大模型微调
陈奕昆2 天前
4.3【LLaMA-Factory实战】教育大模型:个性化学习路径生成系统全解析
人工智能·python·学习·llama·大模型微调