pytorch+maskRcnn框架训练自己的模型以及模型导出ONXX格式供C++部署推理

背景

maskrcnn用作实例分割时,可以较为精准的定位目标物体,相较于yolo只能定位物体的矩形框而言,优势更大。虽然yolo的计算速度更快。

直接开始从0到1使用maskrCNN训练自己的模型并并导出给C++部署(亲测可用)

数据标注

使用labelme标注

标注完生成后,包含标注的jeson文件,以及.jpg图片文件

模型训练

我这里的环境

PyTorch版本: 2.6.0+cu126

torchvision版本: 0.21.0+cu126

复制代码
import os
import json
import numpy as np
import torchvision
from PIL import Image, ImageDraw
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.models.detection import maskrcnn_resnet50_fpn
import torchvision.transforms.functional as F
from tqdm import tqdm

# ===================== 数据集类 =====================
from torchvision import transforms
class LabelMeDataset(Dataset):
    def __init__(self, image_dir, annotation_dir, transforms=None):
        self.image_dir = image_dir
        self.annotation_dir = annotation_dir
        self.transforms = transforms or self.default_transforms()
        # 获取所有 JSON 文件路径
        self.json_files = [os.path.join(annotation_dir, f) for f in os.listdir(annotation_dir) if f.endswith(".json")]
    @staticmethod
    def default_transforms():
        """默认的图像转换"""
        return transforms.Compose([
            transforms.ToTensor()  # 将 PIL.Image 转换为张量 (C, H, W),并归一化到 [0, 1]
        ])

    def __len__(self):
        """返回数据集的长度"""
        return len(self.json_files)

    def _get_image_path(self, image_path):
        """
        根据 JSON 文件中的 imagePath 构造图像的完整路径。
        :param image_path: JSON 文件中的 imagePath 字段
        :return: 规范化的完整图像路径
        """
        # 拼接路径
        full_path = os.path.join(self.image_dir, image_path)
        # 规范化路径
        return os.path.normpath(full_path)
    def __getitem__(self, idx):
        # 加载 JSON 文件
        with open(self.json_files[idx], "r") as f:
            data = json.load(f)

        # 获取图像路径
        img_path = self._get_image_path(data["imagePath"])
        if not os.path.exists(img_path):
            raise FileNotFoundError(f"Image file not found: {img_path}")

        img = Image.open(img_path).convert("RGB")

        # 解析标注信息(省略部分代码)
        boxes = []
        labels = []
        masks = []

        for shape in data["shapes"]:
            label = shape["label"]
            points = shape["points"]

            # 验证 points 格式
            if not isinstance(points, list) or len(points) < 3:
                print(f"Invalid points for label '{label}': {points}")
                continue

            # 确保每个点是二维坐标
            try:
                points = [(float(p[0]), float(p[1])) for p in points]
            except (TypeError, IndexError, ValueError) as e:
                print(f"Error parsing points for label '{label}': {e}")
                continue

            # 转换多边形为掩码
            mask_img = Image.new("L", (data["imageWidth"], data["imageHeight"]), 0)
            ImageDraw.Draw(mask_img).polygon(points, outline=1, fill=1)
            mask = np.array(mask_img)

            # 计算边界框
            pos = np.where(mask)
            if len(pos[0]) == 0 or len(pos[1]) == 0:
                print(f"No valid mask for label '{label}'")
                continue

            xmin = np.min(pos[1])
            xmax = np.max(pos[1])
            ymin = np.min(pos[0])
            ymax = np.max(pos[0])

            boxes.append([xmin, ymin, xmax, ymax])
            labels.append(label)
            masks.append(mask)

        # 将标签转换为整数
        label_map = {"background": 0, "cat": 1, "dog": 2}  # 自定义类别映射
        labels = [label_map.get(label, 0) for label in labels]  # 如果标签不存在,默认为背景

        # 转换为张量
        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.as_tensor(labels, dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)

        target = {
            "boxes": boxes,
            "labels": labels,
            "masks": masks,
            "image_id": torch.tensor([idx]),
            "area": (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
            "iscrowd": torch.zeros((len(boxes),), dtype=torch.int64)
        }

        # 应用图像转换
        if self.transforms is not None:
            img = self.transforms(img)

        return img, target

# ===================== 训练函数 =====================
def train_model(model, train_loader, optimizer, device, num_epochs=10):
    model.to(device)
    model.train()

    for epoch in range(num_epochs):
        total_loss = 0

        for images, targets in tqdm(train_loader):
            # 将图像移动到 GPU
            images = [img.to(device) for img in images]

            # 将目标中的张量移动到 GPU
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

            # 前向传播
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

            # 反向传播和优化
            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

            total_loss += losses.item()

        print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(train_loader)}")

# ===================== 主程序 =====================
if __name__ == "__main__":
    # 定义路径
    image_dir = "C:/workspace/dog_cat_dataset/label"
    annotation_dir = "C:/workspace/dog_cat_dataset/label"

    # 创建数据集和 DataLoader
    dataset = LabelMeDataset(image_dir=image_dir, annotation_dir=annotation_dir)
    train_loader = DataLoader(
        dataset,
        batch_size=2,
        shuffle=True,
        collate_fn=lambda batch: tuple(zip(*batch))
    )

    # 定义模型
    num_classes = 3  # 背景 + 猫 + 狗
    model = maskrcnn_resnet50_fpn(pretrained=True)

    # 修改分类头以适应你的类别数
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)

    # 修改掩码头
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = torchvision.models.detection.mask_rcnn.MaskRCNNPredictor(
        in_features_mask, hidden_layer, num_classes
    )

    # 定义优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)

    # 设备配置
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    # 开始训练
    train_model(model, train_loader, optimizer, device, num_epochs=10)

    # 保存模型
    torch.save(model.state_dict(), "maskrcnn_model.pth")

模型推理

cpp 复制代码
import torch
import torchvision
from PIL import Image, ImageDraw
import torchvision.transforms as T
import matplotlib.pyplot as plt
from torchvision.models.detection import maskrcnn_resnet50_fpn


# ===================== 加载模型 =====================
def load_model(model_path, num_classes=3):
    # 定义模型
    model = maskrcnn_resnet50_fpn(pretrained=False)

    # 修改分类头以适应你的类别数
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)

    # 修改掩码头
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = torchvision.models.detection.mask_rcnn.MaskRCNNPredictor(
        in_features_mask, hidden_layer, num_classes
    )

    # 加载权重
    model.load_state_dict(torch.load(model_path))
    model.eval()  # 设置为评估模式
    return model


# ===================== 预处理输入数据 =====================
def preprocess_image(image_path):
    # 定义与训练时一致的预处理步骤
    transform = T.Compose([
        T.ToTensor()  # 转换为 Tensor 并归一化到 [0, 1]
    ])

    # 加载并预处理输入图像
    image = Image.open(image_path).convert("RGB")
    input_tensor = transform(image).unsqueeze(0)  # 添加 batch 维度
    return image, input_tensor


# ===================== 后处理输出结果 =====================
def visualize_predictions(image, predictions, threshold=0.5):
    """
    可视化 Mask R-CNN 的预测结果。
    :param image: PIL.Image 对象
    :param predictions: 模型的输出
    :param threshold: 置信度阈值
    """
    # 获取预测结果
    masks = predictions[0]['masks'].cpu().detach().numpy()
    boxes = predictions[0]['boxes'].cpu().detach().numpy()
    labels = predictions[0]['labels'].cpu().detach().numpy()
    scores = predictions[0]['scores'].cpu().detach().numpy()

    # 创建绘图对象
    draw = ImageDraw.Draw(image)

    for i in range(len(scores)):
        if scores[i] > threshold:
            # 绘制边界框
            box = boxes[i]
            draw.rectangle(box, outline="red", width=2)

            # 绘制标签
            label = "cat" if labels[i] == 1 else "dog"
            draw.text((box[0], box[1]), f"{label} ({scores[i]:.2f})", fill="red")

            # 绘制掩码
            mask = (masks[i][0] > 0.5).astype(float) * 255
            mask = Image.fromarray(mask).convert("L")
            image.paste(Image.new("RGB", image.size, (255, 0, 0)), mask=mask)

    # 显示图像
    plt.imshow(image)
    plt.axis("off")
    plt.show()


# ===================== 主程序 =====================
if __name__ == "__main__":
    # 加载模型
    model_path = "maskrcnn_model.pth"
    model = load_model(model_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    # 输入图像路径
    image_path = "C:/workspace/dog_cat_dataset/test/cattest1.jpg"

    # 预处理输入数据
    image, input_tensor = preprocess_image(image_path)
    input_tensor = input_tensor.to(device)

    # 进行推理
    with torch.no_grad():
        predictions = model(input_tensor)

    # 后处理输出结果
    visualize_predictions(image, predictions)

模型导出

ONXX版本:

Name: onnx

Version: 1.17.0

cpp 复制代码
import torch
import torchvision
import onnxruntime as ort
import numpy as np
# 定义模型
num_classes = 3  # 背景 + 猫 + 狗
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False)

# 修改分类头以适应你的类别数
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)

# 修改掩码头
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = torchvision.models.detection.mask_rcnn.MaskRCNNPredictor(
    in_features_mask, hidden_layer, num_classes
)

# 加载模型权重
model.load_state_dict(torch.load("C:/workspace/maskrcnn_model.pth"))

# 设置为评估模式
model.eval()
# 假设输入图像大小为 (800, 800),通道数为 3
dummy_input = torch.randn(1, 3, 800, 800)  # Batch size = 1, Channels = 3, Height = 800, Width = 800

# 导出为 ONNX 格式
torch.onnx.export(
    model,
    dummy_input,
    "maskrcnn_model.onnx",  # 输出文件名
    opset_version=12,       # ONNX 版本号,建议使用最新稳定版
    input_names=["input"],  # 输入名称
    output_names=["boxes", "labels", "scores", "masks"],  # 输出名称
    dynamic_axes={
        "input": {0: "batch_size"},  # 动态 batch size
        "boxes": {0: "batch_size"},
        "labels": {0: "batch_size"},
        "scores": {0: "batch_size"},
        "masks": {0: "batch_size"},
    }
)

print("Model has been exported to ONNX format.")


# 加载 ONNX 模型
session = ort.InferenceSession("maskrcnn_model.onnx")

# 准备输入数据
dummy_input = np.random.randn(1, 3, 800, 800).astype(np.float32)  # 匹配导出时的输入形状

# 获取输入输出名称
input_name = session.get_inputs()[0].name
output_names = [output.name for output in session.get_outputs()]

# 推理
outputs = session.run(output_names, {input_name: dummy_input})

# 打印输出
for name, output in zip(output_names, outputs):
    print(f"{name}: {output.shape}")

C++推理

onnxruntime版本

onnxruntime-win-x64-gpu-1.20.0

cpp 复制代码
//onxx推理
#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
#include <string>
#include <Windows.h>  // 使用 WinAPI 进行字符转换
using namespace std;
using namespace cv;
// 图像预处理函数
std::vector<float> preprocess_image(const cv::Mat& image, int target_height, int target_width) {
	cv::Mat resized_image;
	cv::resize(image, resized_image, cv::Size(target_width, target_height));

	// 归一化到 [0, 1] 并转换为浮点数
	resized_image.convertTo(resized_image, CV_32F, 1.0 / 255.0);

	// 转换为 CHW 格式 (C=3, H=height, W=width)
	std::vector<float> input_data(3 * target_height * target_width);
	for (int c = 0; c < 3; ++c) {
		for (int h = 0; h < target_height; ++h) {
			for (int w = 0; w < target_width; ++w) {
				input_data[c * target_height * target_width + h * target_width + w] =
					resized_image.at<cv::Vec3f>(h, w)[c];
			}
		}
	}
	return input_data;
}
// 将 std::string 转换为 std::wstring
std::wstring string_to_wstring(const std::string& str) {
	if (str.empty()) return L"";

	int size_needed = MultiByteToWideChar(CP_UTF8, 0, &str[0], (int)str.size(), NULL, 0);
	std::wstring wstr(size_needed, 0);
	MultiByteToWideChar(CP_UTF8, 0, &str[0], (int)str.size(), &wstr[0], size_needed);
	return wstr;
}
// 将 std::wstring 转换为 std::string
std::string wstring_to_string(const std::wstring& wstr) {
	if (wstr.empty()) return "";

	int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL);
	std::string str(size_needed, 0);
	WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &str[0], size_needed, NULL, NULL);
	return str;
}

int main() {
	// 初始化 ONNX Runtime 环境
	Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "MaskRCNNExample");
	Ort::SessionOptions session_options;

	// 加载 ONNX 模型
	//const char* model_path = "C:/workspace/yolov5/yolov5-master/yolov5-master/maskrcnn_model.onnx";
	//Ort::Session session(env, model_path, session_options);

	// 加载 ONNX 模型
	std::string model_path = "C:/workspace/yolov5/yolov5-master/yolov5-master/maskrcnn_model.onnx";
	std::wstring w_model_path = string_to_wstring(model_path);  // Windows 平台需要宽字符
	Ort::Session session(env, w_model_path.c_str(), session_options);

	// 获取模型输入信息
	Ort::AllocatorWithDefaultOptions allocator;
	size_t num_input_nodes = session.GetInputCount();
	Ort::AllocatedStringPtr input_name = session.GetInputNameAllocated(0, allocator);
	const char* input_names[] = { input_name.get() };
	std::vector<int64_t> input_dims = { 1, 3, 800, 800 };  // 假设输入尺寸为 (1, 3, 800, 800)

	// 加载并预处理输入图像
	cv::Mat image = cv::imread("C:/workspace/dog_cat_dataset/test/cattest1.jpg");
	if (image.empty()) {
		std::cerr << "Error: Could not load image!" << std::endl;
		return -1;
	}
	std::vector<float> input_data = preprocess_image(image, 800, 800);

	// 创建输入张量
	Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
	Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
		memory_info, input_data.data(), input_data.size(), input_dims.data(), input_dims.size());

	// 推理
	std::vector<const char*> output_names = { "boxes", "labels", "scores", "masks" };
	auto output_tensors = session.Run(
		Ort::RunOptions{ nullptr }, input_names, &input_tensor, 1, output_names.data(), output_names.size());

	// 处理输出
// 处理输出
	float* boxes = output_tensors[0].GetTensorMutableData<float>();
	int64_t* labels = output_tensors[1].GetTensorMutableData<int64_t>();
	float* scores = output_tensors[2].GetTensorMutableData<float>();
	float* masks = output_tensors[3].GetTensorMutableData<float>();

	auto mask_shape = output_tensors[3].GetTensorTypeAndShapeInfo().GetShape();
	int num_masks = mask_shape[0];    // 掩码数量
	int mask_height = mask_shape[2];  // 掩码高度
	int mask_width = mask_shape[3];   // 掩码宽度

// 缩放比例
	float scale_x = static_cast<float>(image.cols) / 800.0f;
	float scale_y = static_cast<float>(image.rows) / 800.0f;
	cout << "image.cols , image.rows" << image.cols << image.rows<<endl;

	// 绘制检测框和掩码
	for (size_t i = 0; i < num_masks && scores[i] > 0.5; ++i) {
		// 获取当前实例的边界框

		cout << boxes[i * 4 + 0] << " " << boxes[i * 4 + 1] << " " << boxes[i * 4 + 2] << " " << boxes[i * 4 + 3];


		float x1 = boxes[i * 4 + 0] * scale_x;
		float y1 = boxes[i * 4 + 1] * scale_y;
		float x2 = boxes[i * 4 + 2] * scale_x;
		float y2 = boxes[i * 4 + 3] * scale_y;

		cv::Rect box_rect(x1, y1, x2 - x1, y2 - y1);
		cv::rectangle(image, box_rect, cv::Scalar(0, 255, 0), 2);

		std::string label = "Class " + std::to_string(labels[i]) + " (" + std::to_string(scores[i]).substr(0, 4) + ")";
		cv::putText(image, label, cv::Point(x1, y1 - 10), cv::FONT_HERSHEY_SIMPLEX, 0.9, cv::Scalar(0, 255, 0), 2);

		// 获取当前掩码
		cv::Mat mask(mask_height, mask_width, CV_32F, masks + i * mask_height * mask_width);

		// 调整掩码尺寸以匹配原始图像
		cv::Mat resized_mask;
		cv::resize(mask, resized_mask, cv::Size(image.cols, image.rows));
		cv::imshow("mask", resized_mask);
		 将掩码转换为二值图像
		//cv::Mat binary_mask;
		//cv::threshold(resized_mask, binary_mask, 0.5, 1, cv::THRESH_BINARY);

		 创建一个彩色掩码用于叠加
		//cv::Mat color_mask = cv::Mat::zeros(image.size(), CV_8UC3);
		//cv::randu(color_mask, cv::Scalar(0, 0, 0), cv::Scalar(255, 255, 255)); // 随机颜色
		//cv::cvtColor(color_mask, color_mask, cv::COLOR_BGR2RGB);

		 将掩码应用到图像上
		//cv::Mat masked_image;
		//image.copyTo(masked_image, binary_mask);
		//cv::addWeighted(masked_image, 0.5, image, 0.5, 0, image);
	}
	
	// 显示结果
	cv::imshow("Image with Masks", image);

	cv::waitKey(0);

	return 0;
}
相关推荐
Code_Geo3 分钟前
pyproj 库中 Geod 类讲解
开发语言·python·geod·pyproj
大锦终23 分钟前
详解list容器
c语言·开发语言·数据结构·c++·list
DA022124 分钟前
C++轻量HeaderOnly的JSON库
开发语言·c++·json
triticale27 分钟前
【图论】最短路径问题总结
java·开发语言·图论
Once_day28 分钟前
C之(16)scan-build与clang-tidy使用
c语言·开发语言·clang-tidy·scan-build
code bean29 分钟前
【C#】ForEach vs foreach
开发语言·c#
热爱嵌入式的小许34 分钟前
基于Linux C++多线程服务器 + Qt上位机开发 + STM32 + 8266WIFI的智慧无人超市
开发语言·c++·qt项目·linux项目·linux无人智慧超市·linux多线程服务器·单片机项目
男Ren、麦根1 小时前
Java抽象类:深入理解与应用
java·开发语言
weixin_445054721 小时前
力扣刷题-热题100题-第26题(c++、python)
c++·python·算法·leetcode
王禄DUT1 小时前
相似度计算 第33次CCF-CSP计算机软件能力认证
开发语言·c++