下面为你提供使用Python和PyTorch库实现基于DNN、CNN、LSTM的极化码译码器模型的代码示例,并且会有简单的性能优化手段。
python
import torch
import torch.nn as nn
import torch.optim as optim
# DNN 译码器
class DNNDecoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(DNNDecoder, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmoid(out)
return out
# CNN 译码器
class CNNDecoder(nn.Module):
def __init__(self, input_size, output_size):
super(CNNDecoder, self).__init__()
self.conv1 = nn.Conv1d(1, 16, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool1d(2)
self.fc = nn.Linear((input_size // 2) * 16, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = x.unsqueeze(1)
out = self.conv1(x)
out = self.relu(out)
out = self.pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
out = self.sigmoid(out)
return out
# LSTM 译码器
class LSTMDecoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTMDecoder, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out, _ = self.lstm(x.unsqueeze(1))
out = out[:, -1, :]
out = self.fc(out)
out = self.sigmoid(out)
return out
# 训练模型函数
def train_model(model, train_loader, criterion, optimizer, epochs):
model.train()
for epoch in range(epochs):
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')
# 示例使用
if __name__ == "__main__":
input_size = 10
hidden_size = 20
output_size = 5
batch_size = 32
epochs = 10
# 模拟数据
train_data = torch.randn(100, input_size)
train_labels = torch.randint(0, 2, (100, output_size)).float()
train_dataset = torch.utils.data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型
dnn_decoder = DNNDecoder(input_size, hidden_size, output_size)
cnn_decoder = CNNDecoder(input_size, output_size)
lstm_decoder = LSTMDecoder(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.BCELoss()
dnn_optimizer = optim.Adam(dnn_decoder.parameters(), lr=0.001)
cnn_optimizer = optim.Adam(cnn_decoder.parameters(), lr=0.001)
lstm_optimizer = optim.Adam(lstm_decoder.parameters(), lr=0.001)
# 训练模型
print("Training DNN Decoder:")
train_model(dnn_decoder, train_loader, criterion, dnn_optimizer, epochs)
print("Training CNN Decoder:")
train_model(cnn_decoder, train_loader, criterion, cnn_optimizer, epochs)
print("Training LSTM Decoder:")
train_model(lstm_decoder, train_loader, criterion, lstm_optimizer, epochs)
代码说明:
- DNN 译码器:由两个全连接层构成,中间使用ReLU激活函数,最后使用Sigmoid函数输出。
- CNN 译码器:先经过一个一维卷积层,接着是ReLU激活函数和最大池化层,最后连接一个全连接层,用Sigmoid函数输出。
- LSTM 译码器:包含一个LSTM层和一个全连接层,使用Sigmoid函数输出。
- 训练函数 :
train_model
函数用于训练模型,采用二分类交叉熵损失函数(BCELoss)和Adam优化器。
性能优化手段:
- 调整学习率 :能够使用学习率调度器动态调整学习率,例如
torch.optim.lr_scheduler.StepLR
。 - 增加数据量:更多的数据有助于模型泛化,降低过拟合的可能性。
- 调整模型结构:尝试不同的隐藏层大小、卷积核大小、LSTM层数等。