ICFEEIE 2025 WS4:计算机视觉和自然语言处理中的深度学习模型和算法

WS4 Title: Deep Learning Models and Algorithms in Computer Vision and Natural Language Processing

Summary: Recently, deep learning models and algorithms have become hot topics and could effectively deal with a wide range of real applications, such as computer vision and natural language processing. We believe this trend will continue in the future. Thus, this workshop aims to promote discussions among researchers investigating innovative deep learning technologies from perspectives of fundamental models and algorithms in computer vision and natural language processing. Furthermore, researchers from multiple disciplines including artificial intelligence and mathematics fields are encouraged to join the workshop to discuss the challenging problems and future research directions.

Keywords: Machine learning, deep learning, hyperspectral images, model-driven and data-driven algorithms, videos and medical images

Chair 1

Jinshan Zeng, Jiangxi Normal University, China

Jinshan Zeng is currently a Professor with the School of Computer and Information Engineering, and serves as the associated dean of this school and the director of Jiangxi Provincial Key Laboratory for High Performance Computing. He has authored more than 70 papers in high-impact journals and conferences such as IEEE TPAMI, JMLR, IEEE TSP/TKDE, ICML and AAAI. He has coauthored two papers with collaborators that received the International Consortium of Chinese Mathematicians (ICCM) Best Paper Award in 2018 and 2020). He was twice invited as the Fourty-Five Speakers in ICCM. His current research interests include machine learning (in particular deep learning), computer vision, and natural language processing.

Chair 2

Sumei Li, Tianjin University, China

Dr. Li Sumei received her PHD degree from Nankai University, China, in school of information engineering. She is currently an associate professor at the school of electrical and information engineering , Tianjin University, China. Her research interests are in the areas of (3D) image/video quality assessment and super resolution, object detection, image segmentation, multimedia communication. Her team have produced more than one hundred publications in well-known international journals and conferences. She chaired some conferences. She is a volunteer reviewer with different peer-review outstanding journals.

一、会议信息

会议简称:ICFEEIE 2025

会议全称:第二届电子电气与信息工程前沿国际会议(The 2nd International Conference on the Frontiers of Electronic, Electrical and Information Engineering)

大会官网: http://www.icfeeie.org

官方邮箱:icfeeie@126.com

会议地点:中国·宜宾

会议时间:2025年6月13日-15日

截稿时间:2025年4月14日

出版检索:IEEE出版,提交EI&Scopus数据库

主办单位:宜宾学院

协办单位:湖南文理学院、ESBK国际交流中心、AC学术中心

二、征稿主题

集中但不限于"电子电气与信息工程"等其他相关主题。

电子、电气工程:

电路与电子学、智能芯片、半导体器件、数字信号处理、遥感,雷达和传感、射频技术、微电子技术与电子信息、电子工程中的计算智能、电力领域的数据科学技术、智能电力设备、智能电网的信息与通信技术、电力系统信息安全

信息工程:

信息检索与信息安全、通信技术、信息光学、信息与通信工程、知识发现与数据挖掘、图像处理与采集、语义网格与自然语言处理、神经网络和遗传算法、数字图像的传输、人工智能、计算机与信息科学、计算机建模与仿真技术、计算机辅助设计、测控技术、密码学和信息安全

三、往届已检索

相关推荐
工程师老罗18 小时前
目标检测数据标注的工具与使用方法
人工智能·目标检测·计算机视觉
weixin_3954489118 小时前
排查流程啊啊啊
人工智能·深度学习·机器学习
DN202019 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu19 小时前
【大模型教程——第二部分:Transformer架构揭秘】第2章:模型家族谱系:从编码器到解码器 (Model Architectures)
深度学习·架构·transformer
deephub19 小时前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
飞鹰5120 小时前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer
工程师老罗20 小时前
Pytorch如何验证模型?
人工智能·pytorch·深度学习
zhangfeng113320 小时前
Ollama 支持模型微调但是不支持词库,支持RAG,go语言开发的大模型的推理应用,
人工智能·深度学习·golang
格林威20 小时前
Baumer相机铆钉安装状态检测:判断铆接是否到位的 5 个核心算法,附 OpenCV+Halcon 的实战代码!
人工智能·opencv·算法·计算机视觉·视觉检测·工业相机·堡盟相机
李昊哲小课20 小时前
OpenCV Haar级联分类器人脸检测完整教程
人工智能·opencv·计算机视觉