ICFEEIE 2025 WS4:计算机视觉和自然语言处理中的深度学习模型和算法

WS4 Title: Deep Learning Models and Algorithms in Computer Vision and Natural Language Processing

Summary: Recently, deep learning models and algorithms have become hot topics and could effectively deal with a wide range of real applications, such as computer vision and natural language processing. We believe this trend will continue in the future. Thus, this workshop aims to promote discussions among researchers investigating innovative deep learning technologies from perspectives of fundamental models and algorithms in computer vision and natural language processing. Furthermore, researchers from multiple disciplines including artificial intelligence and mathematics fields are encouraged to join the workshop to discuss the challenging problems and future research directions.

Keywords: Machine learning, deep learning, hyperspectral images, model-driven and data-driven algorithms, videos and medical images

Chair 1

Jinshan Zeng, Jiangxi Normal University, China

Jinshan Zeng is currently a Professor with the School of Computer and Information Engineering, and serves as the associated dean of this school and the director of Jiangxi Provincial Key Laboratory for High Performance Computing. He has authored more than 70 papers in high-impact journals and conferences such as IEEE TPAMI, JMLR, IEEE TSP/TKDE, ICML and AAAI. He has coauthored two papers with collaborators that received the International Consortium of Chinese Mathematicians (ICCM) Best Paper Award in 2018 and 2020). He was twice invited as the Fourty-Five Speakers in ICCM. His current research interests include machine learning (in particular deep learning), computer vision, and natural language processing.

Chair 2

Sumei Li, Tianjin University, China

Dr. Li Sumei received her PHD degree from Nankai University, China, in school of information engineering. She is currently an associate professor at the school of electrical and information engineering , Tianjin University, China. Her research interests are in the areas of (3D) image/video quality assessment and super resolution, object detection, image segmentation, multimedia communication. Her team have produced more than one hundred publications in well-known international journals and conferences. She chaired some conferences. She is a volunteer reviewer with different peer-review outstanding journals.

一、会议信息

会议简称:ICFEEIE 2025

会议全称:第二届电子电气与信息工程前沿国际会议(The 2nd International Conference on the Frontiers of Electronic, Electrical and Information Engineering)

大会官网: http://www.icfeeie.org

官方邮箱:icfeeie@126.com

会议地点:中国·宜宾

会议时间:2025年6月13日-15日

截稿时间:2025年4月14日

出版检索:IEEE出版,提交EI&Scopus数据库

主办单位:宜宾学院

协办单位:湖南文理学院、ESBK国际交流中心、AC学术中心

二、征稿主题

集中但不限于"电子电气与信息工程"等其他相关主题。

电子、电气工程:

电路与电子学、智能芯片、半导体器件、数字信号处理、遥感,雷达和传感、射频技术、微电子技术与电子信息、电子工程中的计算智能、电力领域的数据科学技术、智能电力设备、智能电网的信息与通信技术、电力系统信息安全

信息工程:

信息检索与信息安全、通信技术、信息光学、信息与通信工程、知识发现与数据挖掘、图像处理与采集、语义网格与自然语言处理、神经网络和遗传算法、数字图像的传输、人工智能、计算机与信息科学、计算机建模与仿真技术、计算机辅助设计、测控技术、密码学和信息安全

三、往届已检索

相关推荐
小王爱学人工智能21 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
七元权21 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
什么都想学的阿超21 小时前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
ViperL11 天前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络
金井PRATHAMA1 天前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong01171 天前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
2202_756749691 天前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
人有一心1 天前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
苏苏susuus1 天前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
猫天意1 天前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv