windows大模型llamafactory微调

硬件前提:Nivida显卡

1. 安装wsl

1.1 打开powe shell,

输入: wsl --install

1.2. 开启虚拟化

​编辑

1.3 重启电脑。

2. 下载llama-factory

地址:github.com/hiyouga/LLa...

​编辑

3. 安装

切换到解压后放到的目录,例如D:\llama-factory目录下,

在win系统菜单打开Ubuntu(注意这里不能是右键目录下打开linux)

bash 复制代码
1. 切换到目录:(如:G:\LLaMA-Factory-main,前面加上 /mnt/,转到目标)
cd /mnt/g/LLaMA-Factory-main

2. 安装miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# 运行安装脚本(过程需要回车确认,注意看提示)
bash Miniconda3-latest-Linux-x86_64.sh

# 激活(确认上面已经完成了,不要过早的提前输入)
source ~/.bashrc

# 验证安装(显示版本即完成)
conda --version

3. 新增python运行环境
conda create -n venv2 python=3.12

# 激活环境
conda activate venv2

4. 安装llama-factory
pip install -e ".[torch,metrics]" -i https://mirrors.aliyun.com/pypi/simple/

# 启动
llamafactory-cli webui

# 打开进入界面:
http://localhost:7860

4. 下载不同模型(使用git方法)

  1. 在对应的模型下面对整个仓库进行克隆(这里需要安装lfs进行大文件安装)

​编辑

bash 复制代码
# 新建一个models文件夹,进入
# 安装lfs
git lfs install
# 克隆整个库
git clone https://hf-mirror.com/Qwen/Qwen1.5-0.5B
# 小文件完成100%后打断
ctrl+C
# 进入目录
cd Qwen1.5-0.5B
# 拉取大文件
git lfs pull
# (如果拉取闪退,使用这行命令强行拉取)
git lfs fetch --all
# (如果拉取不了,手动下载LFS的文件,下载后再剪切到目录下)

​编辑

5. 设置界面

​编辑

注意这里假设是 G://LLaMA-Factory-models/Qwen1.5-0.5B,要在前面改为/mnt/

/mnt/g/LLaMA-Factory-models/Qwen1.5-0.5B

参考:(有不太明白的看这篇网址,它有出错的看我上方的命令)使用llamafactory进行模型训练与微调-环境准备与工具部署-EOGEE_岳极技术_大模型与AI知识技术共享社区

相关推荐
临街的小孩19 小时前
Docker 容器访问宿主机 Ollama 服务配置教程
llama·argflow
鸿蒙小白龙20 小时前
OpenHarmony平台大语言模型本地推理:llama深度适配与部署技术详解
人工智能·语言模型·harmonyos·鸿蒙·鸿蒙系统·llama·open harmony
AI大模型4 天前
轻松搞定百个大模型微调!LLaMA-Factory:你的AI模型量产神器
程序员·llm·llama
fly五行8 天前
大模型基础入门与 RAG 实战:从理论到 llama-index 项目搭建(有具体代码示例)
python·ai·llama·llamaindex
德育处主任Pro11 天前
前端玩转大模型,DeepSeek-R1 蒸馏 Llama 模型的 Bedrock 部署
前端·llama
relis12 天前
AVX-512深度实现分析:从原理到LLaMA.cpp的性能优化艺术
性能优化·llama
relis14 天前
llama.cpp RMSNorm CUDA 优化分析报告
算法·llama
云雾J视界14 天前
开源革命下的研发突围:Meta Llama系列模型的知识整合实践与启示
meta·开源·llama·知识管理·知识整合·知识迭代·知识共享
丁学文武15 天前
大模型原理与实践:第三章-预训练语言模型详解_第3部分-Decoder-Only(GPT、LLama、GLM)
人工智能·gpt·语言模型·自然语言处理·大模型·llama·glm
余衫马15 天前
llama.cpp:本地大模型推理的高性能 C++ 框架
c++·人工智能·llm·llama·大模型部署