OpenCV 图形API(5)API参考:数学运算用于执行图像或矩阵加法操作的函数add()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算两个矩阵的每个元素的和。

add 函数计算两个相同大小和相同通道数的矩阵之和:
dst ( I ) = saturate ( src1 ( I ) + src2 ( I ) ) if mask ( I ) ≠ 0 \texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0 dst(I)=saturate(src1(I)+src2(I))if mask(I)=0

该功能可以用矩阵表达式替换:
dst = src1 + src2 \texttt{dst} = \texttt{src1} + \texttt{src2} dst=src1+src2

输入矩阵和输出矩阵可以具有相同的或不同的深度。例如,您可以将一个16位无符号矩阵与一个8位有符号矩阵相加,并将结果存储为32位浮点矩阵。输出矩阵的深度由 ddepth 参数决定。如果 src1.depth() == src2.depth(),ddepth 可以设置为默认值 -1。在这种情况下,输出矩阵将具有与输入矩阵相同的深度。

支持的矩阵数据类型包括:CV_8UC1, CV_8UC3, CV_16UC1, CV_16SC1, CV_32FC1。

注意:

函数的文本ID是 "org.opencv.core.math.add"

函数原型

cpp 复制代码
GMat cv::gapi::addC 	
(
 	const GMat &  	src1,
	const GScalar &  	c,
	int  	ddepth = -1 
) 	

参数

  • 参数src1:第一个输入矩阵。
  • 参数src2:第二个输入矩阵。
  • 参数ddepth:输出矩阵的可选深度。

代码示例

cpp 复制代码
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>  // 包含G-API核心功能
#include <opencv2/opencv.hpp>

int main()
{
    // 读取两个输入图像
    cv::Mat img1 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/stich1.png", cv::IMREAD_COLOR );
    cv::Mat img2 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/stich2.png", cv::IMREAD_COLOR );

    if ( img1.empty() || img2.empty() )
    {
        std::cerr << "无法加载图像,请检查路径。" << std::endl;
        return -1;
    }

    cv::resize( img2, img2, img1.size() );

    // 确保两幅图像具有相同的尺寸
    if ( img1.size() != img2.size() )
    {
        std::cerr << "两幅图像的尺寸必须相同。" << std::endl;
        return -1;
    }

    // 定义G-API图中的输入和输出
    cv::GMat in1, in2;
    auto out = cv::gapi::add( in1, in2 );  // 使用默认深度

    // 创建一个计算图
    cv::GComputation add_graph( cv::GIn( in1, in2 ), cv::GOut( out ) );

    // 输出矩阵
    cv::Mat result;

    // 编译并执行计算图
    add_graph.apply( img1, img2, result, cv::GCompileArgs() );

    // 显示结果
    cv::imshow( "Result", result );
   
    // 如果需要指定不同的输出深度,可以这样做:
    int ddepth           = CV_32F;  // 指定为32位浮点数
    auto out_with_ddepth = cv::gapi::add( in1, in2, ddepth );

    // 创建另一个计算图
    cv::GComputation add_graph_with_ddepth( cv::GIn( in1, in2 ), cv::GOut( out_with_ddepth ) );

    // 输出矩阵(这次是浮点型)
    cv::Mat result_float;

    // 编译并执行计算图
    add_graph_with_ddepth.apply( img1, img2, result_float, cv::GCompileArgs() );

    // 转换回8位图像以便显示
    cv::Mat result_converted;
    result_float.convertTo( result_converted, CV_8U );

    cv::imshow( "图像1", img1 );
    cv::imshow( "图像2", img2 );
    cv::imshow( "Result with specified depth", result_converted );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
ChoSeitaku8 小时前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
q***d17310 小时前
前端微前端部署方案,Nginx与Webpack
前端·nginx·webpack
嫂子的姐夫10 小时前
23-MD5+DES+Webpack:考试宝
java·爬虫·python·webpack·node.js·逆向
y***548810 小时前
前端构建工具扩展,Webpack插件开发
前端·webpack·node.js
4***149010 小时前
前端构建工具多页面配置,Webpack与Vite
前端·webpack·node.js
Carl_奕然12 小时前
【机器视觉】一文掌握常见图像增强算法。
人工智能·opencv·算法·计算机视觉
却道天凉_好个秋13 小时前
OpenCV(二十六):高斯滤波
人工智能·opencv·计算机视觉
不穿格子的程序员15 小时前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找
dingzd9515 小时前
跨平台账号矩阵高效协同术
线性代数·矩阵·web3·facebook·tiktok·instagram·clonbrowser
一勺汤19 小时前
YOLO12 改进、魔改|秩增强线性注意力RALA,通过增强 KV 缓冲与输出特征的矩阵秩,增强 YOLO 对小目标、复杂场景目标的识别能力
线性代数·yolo·矩阵·yolov12·yolo12·yolo12改进·小目标