OpenCV 图形API(5)API参考:数学运算用于执行图像或矩阵加法操作的函数add()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算两个矩阵的每个元素的和。

add 函数计算两个相同大小和相同通道数的矩阵之和:
dst ( I ) = saturate ( src1 ( I ) + src2 ( I ) ) if mask ( I ) ≠ 0 \texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0 dst(I)=saturate(src1(I)+src2(I))if mask(I)=0

该功能可以用矩阵表达式替换:
dst = src1 + src2 \texttt{dst} = \texttt{src1} + \texttt{src2} dst=src1+src2

输入矩阵和输出矩阵可以具有相同的或不同的深度。例如,您可以将一个16位无符号矩阵与一个8位有符号矩阵相加,并将结果存储为32位浮点矩阵。输出矩阵的深度由 ddepth 参数决定。如果 src1.depth() == src2.depth(),ddepth 可以设置为默认值 -1。在这种情况下,输出矩阵将具有与输入矩阵相同的深度。

支持的矩阵数据类型包括:CV_8UC1, CV_8UC3, CV_16UC1, CV_16SC1, CV_32FC1。

注意:

函数的文本ID是 "org.opencv.core.math.add"

函数原型

cpp 复制代码
GMat cv::gapi::addC 	
(
 	const GMat &  	src1,
	const GScalar &  	c,
	int  	ddepth = -1 
) 	

参数

  • 参数src1:第一个输入矩阵。
  • 参数src2:第二个输入矩阵。
  • 参数ddepth:输出矩阵的可选深度。

代码示例

cpp 复制代码
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>  // 包含G-API核心功能
#include <opencv2/opencv.hpp>

int main()
{
    // 读取两个输入图像
    cv::Mat img1 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/stich1.png", cv::IMREAD_COLOR );
    cv::Mat img2 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/stich2.png", cv::IMREAD_COLOR );

    if ( img1.empty() || img2.empty() )
    {
        std::cerr << "无法加载图像,请检查路径。" << std::endl;
        return -1;
    }

    cv::resize( img2, img2, img1.size() );

    // 确保两幅图像具有相同的尺寸
    if ( img1.size() != img2.size() )
    {
        std::cerr << "两幅图像的尺寸必须相同。" << std::endl;
        return -1;
    }

    // 定义G-API图中的输入和输出
    cv::GMat in1, in2;
    auto out = cv::gapi::add( in1, in2 );  // 使用默认深度

    // 创建一个计算图
    cv::GComputation add_graph( cv::GIn( in1, in2 ), cv::GOut( out ) );

    // 输出矩阵
    cv::Mat result;

    // 编译并执行计算图
    add_graph.apply( img1, img2, result, cv::GCompileArgs() );

    // 显示结果
    cv::imshow( "Result", result );
   
    // 如果需要指定不同的输出深度,可以这样做:
    int ddepth           = CV_32F;  // 指定为32位浮点数
    auto out_with_ddepth = cv::gapi::add( in1, in2, ddepth );

    // 创建另一个计算图
    cv::GComputation add_graph_with_ddepth( cv::GIn( in1, in2 ), cv::GOut( out_with_ddepth ) );

    // 输出矩阵(这次是浮点型)
    cv::Mat result_float;

    // 编译并执行计算图
    add_graph_with_ddepth.apply( img1, img2, result_float, cv::GCompileArgs() );

    // 转换回8位图像以便显示
    cv::Mat result_converted;
    result_float.convertTo( result_converted, CV_8U );

    cv::imshow( "图像1", img1 );
    cv::imshow( "图像2", img2 );
    cv::imshow( "Result with specified depth", result_converted );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
拼命鼠鼠3 小时前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
骄傲的心别枯萎14 小时前
RV1126 NO.57:ROCKX+RV1126人脸识别推流项目之读取人脸图片并把特征值保存到sqlite3数据库
数据库·opencv·计算机视觉·sqlite·音视频·rv1126
LYFlied16 小时前
TS-Loader 源码解析与自定义 Webpack Loader 开发指南
前端·webpack·node.js·编译·打包
暴富的Tdy16 小时前
【Webpack 的核心应用场景】
前端·webpack·node.js
好风凭借力,送我上青云16 小时前
Pytorch经典卷积神经网络-----激活函数篇
人工智能·pytorch·深度学习·算法·矩阵·cnn
中年程序员一枚17 小时前
cv2.sqrBoxFilter 是 OpenCV 中用于计算像素邻域平方和的盒式滤波函数
人工智能·opencv·计算机视觉
棒棒的皮皮17 小时前
【OpenCV】Python图像处理之平滑处理
图像处理·python·opencv·计算机视觉
棒棒的皮皮17 小时前
【OpenCV】Python图像处理之重映射
图像处理·python·opencv·计算机视觉
中年程序员一枚17 小时前
cv2.blur 是 OpenCV 中实现均值滤波(归一化盒式滤波) 的核心函数
人工智能·opencv·均值算法
技术净胜1 天前
MATLAB进行图像分割从基础阈值到高级分割
opencv·计算机视觉·matlab