Ollama+Langchaingo+Gin开发本地LLM简单应用

本文目录

1. 前言

通过Ollama+Langchaingo+Gin搭建本地LLM应用。

这里简单再阐述下面几个相关概念。

Ollama:是开源跨平台大模型工具。它支持多种先进的语言模型,如 qwen、llama 等,让用户能在服务器中运行这些模型。用户可以利用它进行文本生成、翻译、代码编写、问答等多种自然语言处理任务,并且具有易于集成、可本地部署、支持模型微调等特点。也就是可以帮助我们本地运行大语言模型的一个工具。

Langchain:将大型语言模型集成到应用程序中。有多种功能模块,能支持开发者构建各种基于语言模型的应用,其应用场景包括聊天机器人、文档分析和总结、代码分析等,可帮助企业和开发者快速构建具有推理能力、可控代理工作流以及方便调试、测试和监控的语言模型应用程序。

Langchaingo: LangChain 的 Go 语言版本,通过它可以快速构建起基于 Go 语言的大型语言模型应用。它与 LangChain 类似,提供了对多种语言模型的支持以及相关的功能模块,方便 Go 语言开发者使用语言模型进行应用开发。

2. 开发

依赖文件

通过命令go get github.com/gin-gonic/gin来安装gin框架,go get github.com/tmc/langchaingo/llms来安装对应的langchaingo。

ollama客户端和模型

到ollama官网下载对应的ollama客户端。

安装好ollama的客户端之后可以在cmd命令行窗口中输入ollama来查看是否安装成功。

现在需要下载对应的大模型了,这里使用阿里的qwen大模型。

使用命令ollama run qwen就可以进行对应的下载了。

等待一会安装好之后就可以使用了。

然后我们就可以直接进行对话了,比较简单。

3. 在Go中使用LLM

刚刚我们已经在客户端使用了LLM了,现在尝试一下在go中使用gin框架来调用LLM进行开发。

代码逻辑很好理解,也比较简单,通过langchaingo中的ollama来访问大模型,并把得到的回复封装回response。

然后我们运行代码,就可以通过gin来访问大模型了。

运行代码之后,通过post工具来看看是否能够访问,ok,访问没问题。

相关推荐
AI大模型系统化学习3 小时前
Excel MCP: 自动读取、提炼、分析Excel数据并生成可视化图表和分析报告
人工智能·ai·大模型·ai大模型·大模型学习·大模型入门·mcp
老翅寒暑7 小时前
AI模型的回调能力的理解和实现
ai·大模型·本地小模型
Mr.小海14 小时前
重排序模型解读 mxbai-rerank-base-v2 强大的重排序模型
大模型
大模型铲屎官16 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
玩电脑的辣条哥17 小时前
模型量化AWQ和GPTQ哪种效果好?
大模型·模型量化·gptq·awq
小G同学1 天前
golang+gin实现api接口开发
golang·gin
Panesle2 天前
阿里开源通义万相Wan2.1-VACE-14B:用于视频创建和编辑的一体化模型
人工智能·开源·大模型·文生视频·多模态·生成模型
幸福清风2 天前
【Liblib】基于LiblibAI自定义模型,总结一下Python开发步骤
ai·大模型·图片·liblib
云边有个稻草人3 天前
GpuGeek:为创新者提供灵活、快速、高效的云计算服务!
人工智能·大模型·算力·gpugeek平台·qwen3-32b
CM莫问3 天前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成