Ollama+Langchaingo+Gin开发本地LLM简单应用

本文目录

1. 前言

通过Ollama+Langchaingo+Gin搭建本地LLM应用。

这里简单再阐述下面几个相关概念。

Ollama:是开源跨平台大模型工具。它支持多种先进的语言模型,如 qwen、llama 等,让用户能在服务器中运行这些模型。用户可以利用它进行文本生成、翻译、代码编写、问答等多种自然语言处理任务,并且具有易于集成、可本地部署、支持模型微调等特点。也就是可以帮助我们本地运行大语言模型的一个工具。

Langchain:将大型语言模型集成到应用程序中。有多种功能模块,能支持开发者构建各种基于语言模型的应用,其应用场景包括聊天机器人、文档分析和总结、代码分析等,可帮助企业和开发者快速构建具有推理能力、可控代理工作流以及方便调试、测试和监控的语言模型应用程序。

Langchaingo: LangChain 的 Go 语言版本,通过它可以快速构建起基于 Go 语言的大型语言模型应用。它与 LangChain 类似,提供了对多种语言模型的支持以及相关的功能模块,方便 Go 语言开发者使用语言模型进行应用开发。

2. 开发

依赖文件

通过命令go get github.com/gin-gonic/gin来安装gin框架,go get github.com/tmc/langchaingo/llms来安装对应的langchaingo。

ollama客户端和模型

到ollama官网下载对应的ollama客户端。

安装好ollama的客户端之后可以在cmd命令行窗口中输入ollama来查看是否安装成功。

现在需要下载对应的大模型了,这里使用阿里的qwen大模型。

使用命令ollama run qwen就可以进行对应的下载了。

等待一会安装好之后就可以使用了。

然后我们就可以直接进行对话了,比较简单。

3. 在Go中使用LLM

刚刚我们已经在客户端使用了LLM了,现在尝试一下在go中使用gin框架来调用LLM进行开发。

代码逻辑很好理解,也比较简单,通过langchaingo中的ollama来访问大模型,并把得到的回复封装回response。

然后我们运行代码,就可以通过gin来访问大模型了。

运行代码之后,通过post工具来看看是否能够访问,ok,访问没问题。

相关推荐
人工智能培训4 小时前
AI提示词(Prompt)基础核心知识点
大模型·prompt·提示词·input
creator_Li6 小时前
Gin框架学习
go·gin
自信的小螺丝钉11 小时前
【AI知识点】模型训练优化之——混合精度训练
人工智能·ai·大模型·混合精度训练
就是一顿骚操作13 小时前
mcp解读——概述及整体架构
人工智能·大模型
陈敬雷-充电了么-CEO兼CTO19 小时前
视频理解新纪元!VideoChat双模架构突破视频对话瓶颈,开启多模态交互智能时代
人工智能·chatgpt·大模型·多模态·世界模型·kimi·deepseek
大千AI助手1 天前
灾难性遗忘:神经网络持续学习的核心挑战与解决方案
人工智能·深度学习·神经网络·大模型·llm·持续学习·灾难性遗忘
大模型教程1 天前
本地AI知识库问答开源技术实现(二)--配置模型和知识库
程序员·llm·ollama
风信子的猫Redamancy1 天前
文心大模型 X1.1:百度交出的“新深度思考”答卷
人工智能·百度·大模型·深度思考
胡耀超2 天前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
胡耀超2 天前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型