Flinksql--订单宽表

参考: https://chbxw.blog.csdn.net/article/details/115078261 (datastream 实现)

一、ODS

模拟订单表及订单明细表

sql 复制代码
CREATE TABLE orders (
    order_id STRING,
    user_id STRING,
    order_time TIMESTAMP(3),
    -- 定义事件时间及 Watermark(允许5秒乱序)
    WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'orders',
    'properties.bootstrap.servers' = 'chb1:9092',
	'properties.group.id' = 'flink-sql-group-orders',  -- 消费者组 ID
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json'
);



CREATE TABLE order_details (
    detail_id STRING,
    order_id STRING,
    product_id STRING,
    price DECIMAL(10,2),
    quantity INT,
    detail_time TIMESTAMP(3),
    -- 定义事件时间及 Watermark(允许5秒乱序)
    WATERMARK FOR detail_time AS detail_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'order_details',
    'properties.bootstrap.servers' = 'chb1:9092',
	'properties.group.id' = 'flink-sql-group-order_details',  -- 消费者组 ID
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json'
);

-- 造数据
insert into order_details values ('d001', 'o001', 'car', 5000, 1, now());
insert into orders values('o001', 'u001', now());


insert into orders values('o003', 'u003', now());

insert into order_details values ('d003', 'o003', 'water', 2, 12, now());
insert into order_details values ('d003', 'o003', 'food', 50, 3, now());

二、DWD 订单和订单明细关联

sql 复制代码
-- sink
CREATE TABLE dwd_trd_order (
    detail_id STRING,
    order_id STRING,
    product_id STRING,
    price DECIMAL(10,2),
    quantity INT,
    detail_time TIMESTAMP(3),
	user_id STRING,
	order_time TIMESTAMP(3),
    -- 定义事件时间及 Watermark(允许5秒乱序)
    WATERMARK FOR detail_time AS detail_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'dwd_trd_order',
    'properties.bootstrap.servers' = 'chb1:9092',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json'
);


insert into dwd_trd_order
SELECT 
	d.detail_id,
    o.order_id,
    d.product_id,
	d.price,
	d.quantity,
	d.detail_time,
	user_id,
	order_time
FROM orders o
JOIN order_details d 
ON o.order_id = d.order_id
AND d.detail_time BETWEEN o.order_time AND o.order_time + INTERVAL '10' MINUTE;

报错:

sql 复制代码
[ERROR] Could not execute SQL statement. Reason:
org.apache.flink.table.api.TableException: The query contains more than one rowtime attribute column [detail_time, order_time] for writing into table 'default_catalog.default_database.dwd_trd_order'.
Please select the column that should be used as the event-time timestamp for the table sink by casting all other columns to regular TIMESTAMP or TIMESTAMP_LTZ.

在 Flink SQL 中,每个表只能有一个 行时间属性(rowtime attribute) 用于定义事件时间(Event Time)。当写入目标表时,若查询结果包含多个行时间属性字段(如 order_timedetail_time),会导致冲突。以下是解决方案:


1. 问题定位

错误信息表明目标表 dwd_trd_order 在写入时检测到多个行时间属性字段(detail_timeorder_time)。

根本原因是:JOIN 后的结果保留了双表的事件时间字段,且未被转换为普通时间戳


2. 解决方案

方案一:仅保留一个行时间属性

在查询中选择一个时间字段作为事件时间,将其他时间字段转为普通 TIMESTAMP 类型。

假设目标表 dwd_trd_order 使用 order_time 作为事件时间:

sql 复制代码
INSERT INTO dwd_trd_order
SELECT 
    o.order_id,
    o.user_id,
    d.product_id,
    d.price,
    d.quantity,
    o.order_time,  -- 保留为行时间属性(需与目标表定义一致)
    CAST(d.detail_time AS TIMESTAMP(3)) AS detail_time  -- 转为普通时间戳
FROM orders o
JOIN order_details d ON o.order_id = d.order_id;
方案二:调整目标表定义

若业务需要同时保留两个时间字段,需在目标表 DDL 中 仅定义一个行时间属性,其他字段转为普通时间戳:

sql 复制代码
CREATE TABLE dwd_trd_order (
    order_id STRING,
    user_id STRING,
    product_id STRING,
    price DECIMAL(10,2),
    quantity INT,
    order_time TIMESTAMP(3),  -- 行时间属性
    detail_time TIMESTAMP(3),  -- 普通时间戳
    WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND  -- 仅一个事件时间
) WITH (...);

3. 关键步骤说明

  1. 检查目标表 DDL

    确保目标表仅有一个 WATERMARK 定义,且对应字段为行时间属性。

  2. 转换多余的行时间属性

    在查询中使用 CAST 将非主时间字段转为普通 TIMESTAMPTIMESTAMP_LTZ

    sql 复制代码
    CAST(detail_time AS TIMESTAMP(3))  -- 转为非行时间属性
  3. 验证查询结果

    使用 DESCRIBE 确认查询结果的字段类型:

    sql 复制代码
    DESCRIBE (SELECT ... FROM ...);
目标表 DDL(仅一个行时间属性)
sql 复制代码
CREATE TABLE dwd_trd_order (
    order_id STRING,
    user_id STRING,
    product_id STRING,
    price DECIMAL(10,2),
    quantity INT,
    order_time TIMESTAMP(3),  -- 行时间属性
    detail_time TIMESTAMP(3),  -- 普通时间戳
    WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (...);
写入数据的 SQL(转换多余时间字段)
sql 复制代码
INSERT INTO dwd_trd_order
SELECT 
    o.order_id,
    o.user_id,
    d.product_id,
    d.price,
    d.quantity,
    o.order_time,  -- 保留为行时间属性
    CAST(d.detail_time AS TIMESTAMP(3)) AS detail_time  -- 转为普通时间戳
FROM orders o
JOIN order_details d ON o.order_id = d.order_id;

三、DWS

sql 复制代码
CREATE TABLE dws_trd_order (
    window_start TIMESTAMP(3),
    window_end TIMESTAMP(3),
    product_num bigint,
	uv bigint,
    total_amount DECIMAL(10,2)
) WITH (
    'connector' = 'kafka',
    'topic' = 'dws_trd_order',
    'properties.bootstrap.servers' = 'chb1:9092',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json'
);

-- dws 
insert into dws_trd_order
SELECT
    window_start, window_end,
    COUNT(1) AS product_num,
    COUNT(DISTINCT user_id) AS uv,
    SUM(price * quantity) AS total_amount
FROM TABLE(
    CUMULATE(TABLE dwd_trd_order, DESCRIPTOR(detail_time), INTERVAL '5' SECOND, INTERVAL '1' DAY)
)
GROUP BY window_start, window_end;

有个问题: 为什么窗口结束时间从 2025-04-02 20:48:50.000 开始???

sql 复制代码
dwd_trd_order 表的时间如下
 order_time              detail_time
 2025-04-02 20:06:01.281 2025-04-02 20:07:35.494
 2025-04-02 20:50:27.975 2025-04-02 20:50:33.233
 2025-04-02 20:50:27.975 2025-04-02 20:50:34.405
 
 累计窗口运算如下
 select
	window_start, window_end,
    count(1) product_num,
	count(distinct user_id) uv,
	sum(price*quantity) as total_amount
	
from TABLE(
	CUMULATE(TABLE dwd_trd_order, DESCRIPTOR(detail_time ), INTERVAL '5' SECOND, INTERVAL '1' DAY)
)
group by window_start,window_end;
为什么窗口结束时间从 2025-04-02 20:48:50.000 开始???
 window_start              window_end                    product_num                   uv                             total_amount
 2025-04-02 00:00:00.000 2025-04-02 20:48:50.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:48:55.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:00.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:05.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:10.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:15.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:20.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:25.000                    1                    1                                  5000.00
 2025-04-02 00:00:00.000 2025-04-02 20:49:30.000
相关推荐
yumgpkpm8 小时前
CMP(类Cloudera CDP 7.3 404版华为泰山Kunpeng)和Apache Doris的对比
大数据·hive·hadoop·spark·apache·hbase·cloudera
呆呆小金人15 小时前
SQL字段对齐:性能优化与数据准确的关键
大数据·数据仓库·sql·数据库开发·etl·etl工程师
zskj_zhyl17 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
苗壮.18 小时前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者19 小时前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink
乌恩大侠19 小时前
DGX Spark 恢复系统
大数据·分布式·spark
KM_锰19 小时前
flink开发遇到的问题
大数据·flink
人大博士的交易之路1 天前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜
YangYang9YangYan1 天前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
私域实战笔记1 天前
企业微信SCRM工具该如何选择?从需求匹配出发的筛选思路
大数据·人工智能·企业微信·scrm·企业微信scrm