目录

第J9周:Inception v3算法实战与解析

文章目录

一、前期准备

1.设置GPU/CPU

python 复制代码
import torch 
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision 
from torchvision import transforms, datasets

import os,PIL,pathlib,random 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

device(type='cpu')

2.导入数据

python 复制代码
data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames

cloudy,rain,.DSStore,shine,sunrise'cloudy', 'rain', '.DS_Store', 'shine', 'sunrise'

python 复制代码
import matplotlib.pyplot as plt
from PIL import Image

## 指定图像文件夹路径
image_folder = './weather_photos/shine/'

## 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

## 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

## 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
    
## 显示图像
plt.tight_layout()
plt.show()    
python 复制代码
total_datadir = './weather_photos/'

train_transforms = transforms.Compose([
    transforms.Resize([299, 299]),      ## 将输入图片resize成统一尺寸
    transforms.ToTensor(),              ## 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(               ## 标准化处理-->转换为标准正态分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])      ## 其中 mean=[0.485, 0.456, 0.406]与std=[0.229, 0.224, 0.225]从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
total_data

Dataset ImageFolder

Number of datapoints: 1125

Root location: ./weather_photos/

StandardTransform

Transform: Compose(

Resize(size=[299, 299], interpolation=bilinear, max_size=None, antialias=True)

ToTensor()

Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

)

3.划分数据集

● train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;

● test_size表示测试集大小,是总体数据长度减去训练集大小。

使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。

python 复制代码
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

(<torch.utils.data.dataset.Subset at 0x16554d2a0>,

<torch.utils.data.dataset.Subset at 0x16603bd60>)

python 复制代码
train_size,test_size

(900, 225)

python 复制代码
batch_size = 32 

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
python 复制代码
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]: torch.Size([32, 3, 299, 299])

Shape of y: torch.Size([32]) torch.int64

二、搭建网络模型

1. Inception-A

python 复制代码
class InceptionA(nn.Module):

    def __init__(self, in_channels, pool_features):
        super(InceptionA, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) # 1

        self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)

        self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)
  1. Inception-B
python 复制代码
class InceptionB(nn.Module):

    def __init__(self, in_channels, channels_7x7):
        super(InceptionB, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)

        c7 = channels_7x7
        self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))

        self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1)

3. Inception-C

python 复制代码
class InceptionC(nn.Module):

    def __init__(self, in_channels):
        super(InceptionC, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)

        self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)

4. Reduction-A

python 复制代码
class ReductionA(nn.Module):

    def __init__(self, in_channels):
        super(ReductionA, self).__init__()
        self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)

5. Reduction-B

python 复制代码
class ReductionB(nn.Module):

    def __init__(self, in_channels):
        super(ReductionB, self).__init__()
        self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return torch.cat(outputs, 1)

6. 辅助分支

python 复制代码
class InceptionAux(nn.Module):

    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)
        self.conv1 = BasicConv2d(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001

    def forward(self, x):
        # 17 x 17 x 768
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # 5 x 5 x 768
        x = self.conv0(x)
        # 5 x 5 x 128
        x = self.conv1(x)
        # 1 x 1 x 768
        x = x.view(x.size(0), -1)
        # 768
        x = self.fc(x)
        # 1000
        return x

7. 模型搭建

python 复制代码
import torch.nn.functional as F

class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
    
class InceptionV3(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=False, transform_input=False):
        super(InceptionV3, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
        self.Mixed_5b = InceptionA(192, pool_features=32)
        self.Mixed_5c = InceptionA(256, pool_features=64)
        self.Mixed_5d = InceptionA(288, pool_features=64)
        self.Mixed_6a = ReductionA(288)
        self.Mixed_6b = InceptionB(768, channels_7x7=128)
        self.Mixed_6c = InceptionB(768, channels_7x7=160)
        self.Mixed_6d = InceptionB(768, channels_7x7=160)
        self.Mixed_6e = InceptionB(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = InceptionAux(768, num_classes)
        self.Mixed_7a = ReductionB(768)
        self.Mixed_7b = InceptionC(1280)
        self.Mixed_7c = InceptionC(2048)
        self.fc = nn.Linear(2048, num_classes)

    def forward(self, x):
        if self.transform_input: # 1
            x = x.clone()
            x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
        # 299 x 299 x 3
        x = self.Conv2d_1a_3x3(x)
        # 149 x 149 x 32
        x = self.Conv2d_2a_3x3(x)
        # 147 x 147 x 32
        x = self.Conv2d_2b_3x3(x)
        # 147 x 147 x 64
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # 73 x 73 x 64
        x = self.Conv2d_3b_1x1(x)
        # 73 x 73 x 80
        x = self.Conv2d_4a_3x3(x)
        # 71 x 71 x 192
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # 35 x 35 x 192
        x = self.Mixed_5b(x)
        # 35 x 35 x 256
        x = self.Mixed_5c(x)
        # 35 x 35 x 288
        x = self.Mixed_5d(x)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)
        # 17 x 17 x 768
        x = self.Mixed_6b(x)
        # 17 x 17 x 768
        x = self.Mixed_6c(x)
        # 17 x 17 x 768
        x = self.Mixed_6d(x)
        # 17 x 17 x 768
        x = self.Mixed_6e(x)
        # 17 x 17 x 768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)
        # 8 x 8 x 2048
        x = F.avg_pool2d(x, kernel_size=8)
        # 1 x 1 x 2048
        x = F.dropout(x, training=self.training)
        # 1 x 1 x 2048
        x = x.view(x.size(0), -1)
        # 2048
        x = self.fc(x)
        # 1000 (num_classes)
        if self.training and self.aux_logits:
            return x, aux
        return x
python 复制代码
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = InceptionV3().to(device)
model

Using cpu device

InceptionV3(

(Conv2d_1a_3x3): BasicConv2d(

(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)

(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(Conv2d_2a_3x3): BasicConv2d(

(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)

(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(Conv2d_2b_3x3): BasicConv2d(

(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(Conv2d_3b_1x1): BasicConv2d(

(conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(Conv2d_4a_3x3): BasicConv2d(

(conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(Mixed_5b): InceptionA(

(branch1x1): BasicConv2d(

(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_1): BasicConv2d(

(conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_2): BasicConv2d(

(conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3): BasicConv2d(

(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_5c): InceptionA(

(branch1x1): BasicConv2d(

(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_1): BasicConv2d(

(conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_2): BasicConv2d(

(conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3): BasicConv2d(

(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_5d): InceptionA(

(branch1x1): BasicConv2d(

(conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_1): BasicConv2d(

(conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch5x5_2): BasicConv2d(

(conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3): BasicConv2d(

(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_6a): ReductionA(

(branch3x3): BasicConv2d(

(conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3): BasicConv2d(

(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), bias=False)

(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_6b): InceptionB(

(branch1x1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_1): BasicConv2d(

(conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_2): BasicConv2d(

(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_3): BasicConv2d(

(conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_1): BasicConv2d(

(conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_2): BasicConv2d(

(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_3): BasicConv2d(

(conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_4): BasicConv2d(

(conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_5): BasicConv2d(

(conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_6c): InceptionB(

(branch1x1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_1): BasicConv2d(

(conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_2): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_3): BasicConv2d(

(conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_1): BasicConv2d(

(conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_2): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_3): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_4): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_5): BasicConv2d(

(conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_6d): InceptionB(

(branch1x1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_1): BasicConv2d(

(conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_2): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_3): BasicConv2d(

(conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_1): BasicConv2d(

(conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_2): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_3): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_4): BasicConv2d(

(conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_5): BasicConv2d(

(conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_6e): InceptionB(

(branch1x1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_2): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7_3): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_2): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_3): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_4): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7dbl_5): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_7a): ReductionB(

(branch3x3_1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_2): BasicConv2d(

(conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2), bias=False)

(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7x3_1): BasicConv2d(

(conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7x3_2): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7x3_3): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch7x7x3_4): BasicConv2d(

(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_7b): InceptionC(

(branch1x1): BasicConv2d(

(conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_1): BasicConv2d(

(conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_2a): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_2b): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3a): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3b): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(Mixed_7c): InceptionC(

(branch1x1): BasicConv2d(

(conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_1): BasicConv2d(

(conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_2a): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3_2b): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_1): BasicConv2d(

(conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_2): BasicConv2d(

(conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3a): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch3x3dbl_3b): BasicConv2d(

(conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)

(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

(branch_pool): BasicConv2d(

(conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)

(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)

)

)

(fc): Linear(in_features=2048, out_features=1000, bias=True)

)

8. 查看模型详情

python 复制代码
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 299, 299))
复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 149, 149]             864
       BatchNorm2d-2         [-1, 32, 149, 149]              64
       BasicConv2d-3         [-1, 32, 149, 149]               0
            Conv2d-4         [-1, 32, 147, 147]           9,216
       BatchNorm2d-5         [-1, 32, 147, 147]              64
       BasicConv2d-6         [-1, 32, 147, 147]               0
            Conv2d-7         [-1, 64, 147, 147]          18,432
       BatchNorm2d-8         [-1, 64, 147, 147]             128
       BasicConv2d-9         [-1, 64, 147, 147]               0
           Conv2d-10           [-1, 80, 73, 73]           5,120
      BatchNorm2d-11           [-1, 80, 73, 73]             160
      BasicConv2d-12           [-1, 80, 73, 73]               0
           Conv2d-13          [-1, 192, 71, 71]         138,240
      BatchNorm2d-14          [-1, 192, 71, 71]             384
      BasicConv2d-15          [-1, 192, 71, 71]               0
           Conv2d-16           [-1, 64, 35, 35]          12,288
      BatchNorm2d-17           [-1, 64, 35, 35]             128
      BasicConv2d-18           [-1, 64, 35, 35]               0
           Conv2d-19           [-1, 48, 35, 35]           9,216
      BatchNorm2d-20           [-1, 48, 35, 35]              96
      BasicConv2d-21           [-1, 48, 35, 35]               0
           Conv2d-22           [-1, 64, 35, 35]          76,800
      BatchNorm2d-23           [-1, 64, 35, 35]             128
      BasicConv2d-24           [-1, 64, 35, 35]               0
           Conv2d-25           [-1, 64, 35, 35]          12,288
      BatchNorm2d-26           [-1, 64, 35, 35]             128
      BasicConv2d-27           [-1, 64, 35, 35]               0
           Conv2d-28           [-1, 96, 35, 35]          55,296
      BatchNorm2d-29           [-1, 96, 35, 35]             192
      BasicConv2d-30           [-1, 96, 35, 35]               0
           Conv2d-31           [-1, 96, 35, 35]          82,944
      BatchNorm2d-32           [-1, 96, 35, 35]             192
      BasicConv2d-33           [-1, 96, 35, 35]               0
           Conv2d-34           [-1, 32, 35, 35]           6,144
      BatchNorm2d-35           [-1, 32, 35, 35]              64
      BasicConv2d-36           [-1, 32, 35, 35]               0
       InceptionA-37          [-1, 256, 35, 35]               0
           Conv2d-38           [-1, 64, 35, 35]          16,384
      BatchNorm2d-39           [-1, 64, 35, 35]             128
      BasicConv2d-40           [-1, 64, 35, 35]               0
           Conv2d-41           [-1, 48, 35, 35]          12,288
      BatchNorm2d-42           [-1, 48, 35, 35]              96
      BasicConv2d-43           [-1, 48, 35, 35]               0
           Conv2d-44           [-1, 64, 35, 35]          76,800
      BatchNorm2d-45           [-1, 64, 35, 35]             128
      BasicConv2d-46           [-1, 64, 35, 35]               0
           Conv2d-47           [-1, 64, 35, 35]          16,384
      BatchNorm2d-48           [-1, 64, 35, 35]             128
      BasicConv2d-49           [-1, 64, 35, 35]               0
           Conv2d-50           [-1, 96, 35, 35]          55,296
      BatchNorm2d-51           [-1, 96, 35, 35]             192
      BasicConv2d-52           [-1, 96, 35, 35]               0
           Conv2d-53           [-1, 96, 35, 35]          82,944
      BatchNorm2d-54           [-1, 96, 35, 35]             192
      BasicConv2d-55           [-1, 96, 35, 35]               0
           Conv2d-56           [-1, 64, 35, 35]          16,384
      BatchNorm2d-57           [-1, 64, 35, 35]             128
      BasicConv2d-58           [-1, 64, 35, 35]               0
       InceptionA-59          [-1, 288, 35, 35]               0
           Conv2d-60           [-1, 64, 35, 35]          18,432
      BatchNorm2d-61           [-1, 64, 35, 35]             128
      BasicConv2d-62           [-1, 64, 35, 35]               0
           Conv2d-63           [-1, 48, 35, 35]          13,824
      BatchNorm2d-64           [-1, 48, 35, 35]              96
      BasicConv2d-65           [-1, 48, 35, 35]               0
           Conv2d-66           [-1, 64, 35, 35]          76,800
      BatchNorm2d-67           [-1, 64, 35, 35]             128
      BasicConv2d-68           [-1, 64, 35, 35]               0
           Conv2d-69           [-1, 64, 35, 35]          18,432
      BatchNorm2d-70           [-1, 64, 35, 35]             128
      BasicConv2d-71           [-1, 64, 35, 35]               0
           Conv2d-72           [-1, 96, 35, 35]          55,296
      BatchNorm2d-73           [-1, 96, 35, 35]             192
      BasicConv2d-74           [-1, 96, 35, 35]               0
           Conv2d-75           [-1, 96, 35, 35]          82,944
      BatchNorm2d-76           [-1, 96, 35, 35]             192
      BasicConv2d-77           [-1, 96, 35, 35]               0
           Conv2d-78           [-1, 64, 35, 35]          18,432
      BatchNorm2d-79           [-1, 64, 35, 35]             128
      BasicConv2d-80           [-1, 64, 35, 35]               0
       InceptionA-81          [-1, 288, 35, 35]               0
           Conv2d-82          [-1, 384, 17, 17]         995,328
      BatchNorm2d-83          [-1, 384, 17, 17]             768
      BasicConv2d-84          [-1, 384, 17, 17]               0
           Conv2d-85           [-1, 64, 35, 35]          18,432
      BatchNorm2d-86           [-1, 64, 35, 35]             128
      BasicConv2d-87           [-1, 64, 35, 35]               0
           Conv2d-88           [-1, 96, 35, 35]          55,296
      BatchNorm2d-89           [-1, 96, 35, 35]             192
      BasicConv2d-90           [-1, 96, 35, 35]               0
           Conv2d-91           [-1, 96, 17, 17]          82,944
      BatchNorm2d-92           [-1, 96, 17, 17]             192
      BasicConv2d-93           [-1, 96, 17, 17]               0
       ReductionA-94          [-1, 768, 17, 17]               0
           Conv2d-95          [-1, 192, 17, 17]         147,456
      BatchNorm2d-96          [-1, 192, 17, 17]             384
      BasicConv2d-97          [-1, 192, 17, 17]               0
           Conv2d-98          [-1, 128, 17, 17]          98,304
      BatchNorm2d-99          [-1, 128, 17, 17]             256
     BasicConv2d-100          [-1, 128, 17, 17]               0
          Conv2d-101          [-1, 128, 17, 17]         114,688
     BatchNorm2d-102          [-1, 128, 17, 17]             256
     BasicConv2d-103          [-1, 128, 17, 17]               0
          Conv2d-104          [-1, 192, 17, 17]         172,032
     BatchNorm2d-105          [-1, 192, 17, 17]             384
     BasicConv2d-106          [-1, 192, 17, 17]               0
          Conv2d-107          [-1, 128, 17, 17]          98,304
     BatchNorm2d-108          [-1, 128, 17, 17]             256
     BasicConv2d-109          [-1, 128, 17, 17]               0
          Conv2d-110          [-1, 128, 17, 17]         114,688
     BatchNorm2d-111          [-1, 128, 17, 17]             256
     BasicConv2d-112          [-1, 128, 17, 17]               0
          Conv2d-113          [-1, 128, 17, 17]         114,688
     BatchNorm2d-114          [-1, 128, 17, 17]             256
     BasicConv2d-115          [-1, 128, 17, 17]               0
          Conv2d-116          [-1, 128, 17, 17]         114,688
     BatchNorm2d-117          [-1, 128, 17, 17]             256
     BasicConv2d-118          [-1, 128, 17, 17]               0
          Conv2d-119          [-1, 192, 17, 17]         172,032
     BatchNorm2d-120          [-1, 192, 17, 17]             384
     BasicConv2d-121          [-1, 192, 17, 17]               0
          Conv2d-122          [-1, 192, 17, 17]         147,456
     BatchNorm2d-123          [-1, 192, 17, 17]             384
     BasicConv2d-124          [-1, 192, 17, 17]               0
      InceptionB-125          [-1, 768, 17, 17]               0
          Conv2d-126          [-1, 192, 17, 17]         147,456
     BatchNorm2d-127          [-1, 192, 17, 17]             384
     BasicConv2d-128          [-1, 192, 17, 17]               0
          Conv2d-129          [-1, 160, 17, 17]         122,880
     BatchNorm2d-130          [-1, 160, 17, 17]             320
     BasicConv2d-131          [-1, 160, 17, 17]               0
          Conv2d-132          [-1, 160, 17, 17]         179,200
     BatchNorm2d-133          [-1, 160, 17, 17]             320
     BasicConv2d-134          [-1, 160, 17, 17]               0
          Conv2d-135          [-1, 192, 17, 17]         215,040
     BatchNorm2d-136          [-1, 192, 17, 17]             384
     BasicConv2d-137          [-1, 192, 17, 17]               0
          Conv2d-138          [-1, 160, 17, 17]         122,880
     BatchNorm2d-139          [-1, 160, 17, 17]             320
     BasicConv2d-140          [-1, 160, 17, 17]               0
          Conv2d-141          [-1, 160, 17, 17]         179,200
     BatchNorm2d-142          [-1, 160, 17, 17]             320
     BasicConv2d-143          [-1, 160, 17, 17]               0
          Conv2d-144          [-1, 160, 17, 17]         179,200
     BatchNorm2d-145          [-1, 160, 17, 17]             320
     BasicConv2d-146          [-1, 160, 17, 17]               0
          Conv2d-147          [-1, 160, 17, 17]         179,200
     BatchNorm2d-148          [-1, 160, 17, 17]             320
     BasicConv2d-149          [-1, 160, 17, 17]               0
          Conv2d-150          [-1, 192, 17, 17]         215,040
     BatchNorm2d-151          [-1, 192, 17, 17]             384
     BasicConv2d-152          [-1, 192, 17, 17]               0
          Conv2d-153          [-1, 192, 17, 17]         147,456
     BatchNorm2d-154          [-1, 192, 17, 17]             384
     BasicConv2d-155          [-1, 192, 17, 17]               0
      InceptionB-156          [-1, 768, 17, 17]               0
          Conv2d-157          [-1, 192, 17, 17]         147,456
     BatchNorm2d-158          [-1, 192, 17, 17]             384
     BasicConv2d-159          [-1, 192, 17, 17]               0
          Conv2d-160          [-1, 160, 17, 17]         122,880
     BatchNorm2d-161          [-1, 160, 17, 17]             320
     BasicConv2d-162          [-1, 160, 17, 17]               0
          Conv2d-163          [-1, 160, 17, 17]         179,200
     BatchNorm2d-164          [-1, 160, 17, 17]             320
     BasicConv2d-165          [-1, 160, 17, 17]               0
          Conv2d-166          [-1, 192, 17, 17]         215,040
     BatchNorm2d-167          [-1, 192, 17, 17]             384
     BasicConv2d-168          [-1, 192, 17, 17]               0
          Conv2d-169          [-1, 160, 17, 17]         122,880
     BatchNorm2d-170          [-1, 160, 17, 17]             320
     BasicConv2d-171          [-1, 160, 17, 17]               0
          Conv2d-172          [-1, 160, 17, 17]         179,200
     BatchNorm2d-173          [-1, 160, 17, 17]             320
     BasicConv2d-174          [-1, 160, 17, 17]               0
          Conv2d-175          [-1, 160, 17, 17]         179,200
     BatchNorm2d-176          [-1, 160, 17, 17]             320
     BasicConv2d-177          [-1, 160, 17, 17]               0
          Conv2d-178          [-1, 160, 17, 17]         179,200
     BatchNorm2d-179          [-1, 160, 17, 17]             320
     BasicConv2d-180          [-1, 160, 17, 17]               0
          Conv2d-181          [-1, 192, 17, 17]         215,040
     BatchNorm2d-182          [-1, 192, 17, 17]             384
     BasicConv2d-183          [-1, 192, 17, 17]               0
          Conv2d-184          [-1, 192, 17, 17]         147,456
     BatchNorm2d-185          [-1, 192, 17, 17]             384
     BasicConv2d-186          [-1, 192, 17, 17]               0
      InceptionB-187          [-1, 768, 17, 17]               0
          Conv2d-188          [-1, 192, 17, 17]         147,456
     BatchNorm2d-189          [-1, 192, 17, 17]             384
     BasicConv2d-190          [-1, 192, 17, 17]               0
          Conv2d-191          [-1, 192, 17, 17]         147,456
     BatchNorm2d-192          [-1, 192, 17, 17]             384
     BasicConv2d-193          [-1, 192, 17, 17]               0
          Conv2d-194          [-1, 192, 17, 17]         258,048
     BatchNorm2d-195          [-1, 192, 17, 17]             384
     BasicConv2d-196          [-1, 192, 17, 17]               0
          Conv2d-197          [-1, 192, 17, 17]         258,048
     BatchNorm2d-198          [-1, 192, 17, 17]             384
     BasicConv2d-199          [-1, 192, 17, 17]               0
          Conv2d-200          [-1, 192, 17, 17]         147,456
     BatchNorm2d-201          [-1, 192, 17, 17]             384
     BasicConv2d-202          [-1, 192, 17, 17]               0
          Conv2d-203          [-1, 192, 17, 17]         258,048
     BatchNorm2d-204          [-1, 192, 17, 17]             384
     BasicConv2d-205          [-1, 192, 17, 17]               0
          Conv2d-206          [-1, 192, 17, 17]         258,048
     BatchNorm2d-207          [-1, 192, 17, 17]             384
     BasicConv2d-208          [-1, 192, 17, 17]               0
          Conv2d-209          [-1, 192, 17, 17]         258,048
     BatchNorm2d-210          [-1, 192, 17, 17]             384
     BasicConv2d-211          [-1, 192, 17, 17]               0
          Conv2d-212          [-1, 192, 17, 17]         258,048
     BatchNorm2d-213          [-1, 192, 17, 17]             384
     BasicConv2d-214          [-1, 192, 17, 17]               0
          Conv2d-215          [-1, 192, 17, 17]         147,456
     BatchNorm2d-216          [-1, 192, 17, 17]             384
     BasicConv2d-217          [-1, 192, 17, 17]               0
      InceptionB-218          [-1, 768, 17, 17]               0
          Conv2d-219          [-1, 192, 17, 17]         147,456
     BatchNorm2d-220          [-1, 192, 17, 17]             384
     BasicConv2d-221          [-1, 192, 17, 17]               0
          Conv2d-222            [-1, 320, 8, 8]         552,960
     BatchNorm2d-223            [-1, 320, 8, 8]             640
     BasicConv2d-224            [-1, 320, 8, 8]               0
          Conv2d-225          [-1, 192, 17, 17]         147,456
     BatchNorm2d-226          [-1, 192, 17, 17]             384
     BasicConv2d-227          [-1, 192, 17, 17]               0
          Conv2d-228          [-1, 192, 17, 17]         258,048
     BatchNorm2d-229          [-1, 192, 17, 17]             384
     BasicConv2d-230          [-1, 192, 17, 17]               0
          Conv2d-231          [-1, 192, 17, 17]         258,048
     BatchNorm2d-232          [-1, 192, 17, 17]             384
     BasicConv2d-233          [-1, 192, 17, 17]               0
          Conv2d-234            [-1, 192, 8, 8]         331,776
     BatchNorm2d-235            [-1, 192, 8, 8]             384
     BasicConv2d-236            [-1, 192, 8, 8]               0
      ReductionB-237           [-1, 1280, 8, 8]               0
          Conv2d-238            [-1, 320, 8, 8]         409,600
     BatchNorm2d-239            [-1, 320, 8, 8]             640
     BasicConv2d-240            [-1, 320, 8, 8]               0
          Conv2d-241            [-1, 384, 8, 8]         491,520
     BatchNorm2d-242            [-1, 384, 8, 8]             768
     BasicConv2d-243            [-1, 384, 8, 8]               0
          Conv2d-244            [-1, 384, 8, 8]         442,368
     BatchNorm2d-245            [-1, 384, 8, 8]             768
     BasicConv2d-246            [-1, 384, 8, 8]               0
          Conv2d-247            [-1, 384, 8, 8]         442,368
     BatchNorm2d-248            [-1, 384, 8, 8]             768
     BasicConv2d-249            [-1, 384, 8, 8]               0
          Conv2d-250            [-1, 448, 8, 8]         573,440
     BatchNorm2d-251            [-1, 448, 8, 8]             896
     BasicConv2d-252            [-1, 448, 8, 8]               0
          Conv2d-253            [-1, 384, 8, 8]       1,548,288
     BatchNorm2d-254            [-1, 384, 8, 8]             768
     BasicConv2d-255            [-1, 384, 8, 8]               0
          Conv2d-256            [-1, 384, 8, 8]         442,368
     BatchNorm2d-257            [-1, 384, 8, 8]             768
     BasicConv2d-258            [-1, 384, 8, 8]               0
          Conv2d-259            [-1, 384, 8, 8]         442,368
     BatchNorm2d-260            [-1, 384, 8, 8]             768
     BasicConv2d-261            [-1, 384, 8, 8]               0
          Conv2d-262            [-1, 192, 8, 8]         245,760
     BatchNorm2d-263            [-1, 192, 8, 8]             384
     BasicConv2d-264            [-1, 192, 8, 8]               0
      InceptionC-265           [-1, 2048, 8, 8]               0
          Conv2d-266            [-1, 320, 8, 8]         655,360
     BatchNorm2d-267            [-1, 320, 8, 8]             640
     BasicConv2d-268            [-1, 320, 8, 8]               0
          Conv2d-269            [-1, 384, 8, 8]         786,432
     BatchNorm2d-270            [-1, 384, 8, 8]             768
     BasicConv2d-271            [-1, 384, 8, 8]               0
          Conv2d-272            [-1, 384, 8, 8]         442,368
     BatchNorm2d-273            [-1, 384, 8, 8]             768
     BasicConv2d-274            [-1, 384, 8, 8]               0
          Conv2d-275            [-1, 384, 8, 8]         442,368
     BatchNorm2d-276            [-1, 384, 8, 8]             768
     BasicConv2d-277            [-1, 384, 8, 8]               0
          Conv2d-278            [-1, 448, 8, 8]         917,504
     BatchNorm2d-279            [-1, 448, 8, 8]             896
     BasicConv2d-280            [-1, 448, 8, 8]               0
          Conv2d-281            [-1, 384, 8, 8]       1,548,288
     BatchNorm2d-282            [-1, 384, 8, 8]             768
     BasicConv2d-283            [-1, 384, 8, 8]               0
          Conv2d-284            [-1, 384, 8, 8]         442,368
     BatchNorm2d-285            [-1, 384, 8, 8]             768
     BasicConv2d-286            [-1, 384, 8, 8]               0
          Conv2d-287            [-1, 384, 8, 8]         442,368
     BatchNorm2d-288            [-1, 384, 8, 8]             768
     BasicConv2d-289            [-1, 384, 8, 8]               0
          Conv2d-290            [-1, 192, 8, 8]         393,216
     BatchNorm2d-291            [-1, 192, 8, 8]             384
     BasicConv2d-292            [-1, 192, 8, 8]               0
      InceptionC-293           [-1, 2048, 8, 8]               0
          Linear-294                 [-1, 1000]       2,049,000
================================================================
Total params: 23,834,568
Trainable params: 23,834,568
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.02
Forward/backward pass size (MB): 224.12
Params size (MB): 90.92
Estimated Total Size (MB): 316.07
----------------------------------------------------------------

三、训练模型

1.设置超参数

python 复制代码
loss_fn = nn.CrossEntropyLoss()  ##创建损失函数
learn_rate = 1e-4    ## 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate, weight_decay=1e-4)   
scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.1)

2.编写训练函数

python 复制代码
## 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)      ## 训练集的大小,一共60000张图片
    num_batches = len(dataloader)       ## 批次数目, 1875(60000/32)
    
    train_loss, train_acc = 0, 0.       ## 初始化训练损失和正确率
    
    for X, y in dataloader:   ## 获取图片及其比标签
        X, y = X.to(device), y.to(device)
        
        ## 计算预测误差
        pred = model(X)               ## 网络输出
        loss = loss_fn(pred, y)       ## 计算网络输出和真实值之间的差距
        
        ## 反向传播
        optimizer.zero_grad()         ## grad属性归零
        loss.backward()               ## 反向传播
        optimizer.step()              ## 每一步自动更新
        
        ## 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc, train_loss    

3.编写测试函数

python 复制代码
def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset)   ## 测试集大小一共10000张图片
    num_batches = len(dataloader)    ## 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    ## 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            ## 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            
        test_acc /= size
        test_loss /= num_batches
        
        return test_acc, test_loss
    

4.正式训练

python 复制代码
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
复制代码
Epoch: 1, Train_acc:71.8%, Train_loss:2.577, Test_acc:25.3%, Test_loss:6.160
Epoch: 2, Train_acc:86.0%, Train_loss:0.786, Test_acc:91.1%, Test_loss:0.296
Epoch: 3, Train_acc:90.4%, Train_loss:0.340, Test_acc:89.3%, Test_loss:0.372
Epoch: 4, Train_acc:90.2%, Train_loss:0.341, Test_acc:95.6%, Test_loss:0.169
Epoch: 5, Train_acc:91.1%, Train_loss:0.273, Test_acc:95.1%, Test_loss:0.135
Epoch: 6, Train_acc:93.1%, Train_loss:0.212, Test_acc:93.8%, Test_loss:0.217
Epoch: 7, Train_acc:91.4%, Train_loss:0.266, Test_acc:94.2%, Test_loss:0.145
Epoch: 8, Train_acc:93.4%, Train_loss:0.278, Test_acc:91.1%, Test_loss:0.252
Epoch: 9, Train_acc:90.9%, Train_loss:0.334, Test_acc:91.6%, Test_loss:0.204
Epoch:10, Train_acc:91.4%, Train_loss:0.339, Test_acc:88.9%, Test_loss:0.345
Epoch:11, Train_acc:94.2%, Train_loss:0.171, Test_acc:96.0%, Test_loss:0.105
Epoch:12, Train_acc:95.0%, Train_loss:0.166, Test_acc:95.6%, Test_loss:0.096
Epoch:13, Train_acc:95.6%, Train_loss:0.103, Test_acc:96.0%, Test_loss:0.119
Epoch:14, Train_acc:97.3%, Train_loss:0.190, Test_acc:94.7%, Test_loss:0.138
Epoch:15, Train_acc:94.6%, Train_loss:0.218, Test_acc:90.2%, Test_loss:0.242
Epoch:16, Train_acc:92.9%, Train_loss:0.189, Test_acc:96.9%, Test_loss:0.109
Epoch:17, Train_acc:95.6%, Train_loss:0.132, Test_acc:93.8%, Test_loss:0.116
Epoch:18, Train_acc:96.3%, Train_loss:0.123, Test_acc:96.9%, Test_loss:0.082
Epoch:19, Train_acc:96.9%, Train_loss:0.170, Test_acc:96.4%, Test_loss:0.085
Epoch:20, Train_acc:94.9%, Train_loss:0.190, Test_acc:96.4%, Test_loss:0.118
Done

四、结果可视化

python 复制代码
import matplotlib.pyplot as plt

# 隐藏警告
import warnings
warnings.filterwarnings("ignore")  ## 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   ## 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 ## 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

总结:

本周主要学习了Inception V3,了解到了该模型相对于Inception V1做出的改进,同时通过实践更加深入地了解到了Inception V3的结构。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
百锦再15 分钟前
五种常用的web加密算法
前端·算法·前端框架·web·加密·机密
碳基学AI1 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
独家回忆3642 小时前
每日算法-250410
算法
袖清暮雨2 小时前
Python刷题笔记
笔记·python·算法
风掣长空2 小时前
八大排序——c++版
数据结构·算法·排序算法
流星白龙4 小时前
【C++算法】50.分治_归并_翻转对
c++·算法
Java致死5 小时前
费马小定理
算法·费马小定理
不吃元西5 小时前
leetcode 74. 搜索二维矩阵
算法·leetcode·矩阵
小开不是小可爱5 小时前
leetcode_454. 四数相加 II_java
java·数据结构·算法·leetcode
aaaweiaaaaaa6 小时前
蓝桥杯c ++笔记(含算法 贪心+动态规划+dp+进制转化+便利等)
c语言·数据结构·c++·算法·贪心算法·蓝桥杯·动态规划