$R^n$超平面约束下的向量列

原向量: x → \overset{\rightarrow}{x} x→

与 x → \overset{\rightarrow}{x} x→法向相同的法向量(与 x → \overset{\rightarrow}{x} x→同向) ( x → ⋅ n → ∣ n → ∣ 2 ) n → (\frac{\overset{\rightarrow}x\cdot\overset{\rightarrow}n}{|\overset\rightarrow n|^2})\overset\rightarrow n (∣n→∣2x→⋅n→)n→(即原向量在法向的投影)

投影到超平面的向量 x → − ( x → ⋅ n → ∣ n → ∣ 2 ) n → \overset{\rightarrow}{x}-(\frac{\overset{\rightarrow}x\cdot\overset{\rightarrow}n}{|\overset\rightarrow n|^2})\overset\rightarrow n x→−(∣n→∣2x→⋅n→)n→(与 x → \overset{\rightarrow}{x} x→同向)

(就是一个向量三角形)

比如 x → = ( x 1 , ⋯ x n ) \overset{\rightarrow}{x}=(x_1,\cdots x_n) x→=(x1,⋯xn),梯度约束在 x 1 + ⋯ + x n = 1 x_1+\cdots+x_n=1 x1+⋯+xn=1中,那么

python 复制代码
grad = list(map(lambda x: x-tf.reshape(tf.reshape(x, [1,-1])@tf.ones([x.shape[0],1]),[])/(x.shape[0])*tf.ones([x.shape[0]]), grad))

要做一次投影,让梯度也满足约束,从而当初始点满足约束时,这样使用梯度下降可以使得点列一直满足约束

相关推荐
小小毛桃3 分钟前
在分类任务中,显著性分析
人工智能·分类·数据挖掘
Black_Rock_br6 分钟前
智驭未来:NVIDIA自动驾驶安全白皮书与实验室创新实践深度解析
人工智能·安全·自动驾驶
蜡笔小电芯9 分钟前
【OpenCV】第二章——图像处理基础
图像处理·人工智能·opencv·计算机视觉
蜂耘10 分钟前
特斯拉宣布启动自动驾驶网约车测试,无人出租车服务进入最后准备阶段
人工智能·机器学习·自动驾驶
COOCC133 分钟前
探秘卷积神经网络:深度学习的图像识别利器
人工智能·深度学习·神经网络·目标检测·机器学习·cnn
欲掩35 分钟前
神经网络与深度学习第四章-前馈神经网络
人工智能·深度学习·神经网络
2301_7664695637 分钟前
从零开始构建一个 RAG + Flask 问答系统
人工智能
国科安芯39 分钟前
基于先进MCU的机器人运动控制系统设计:理论、实践与前沿技术
人工智能·单片机·机器人
yangmf20401 小时前
私有知识库 Coco AI 实战(二):摄入 MongoDB 数据
数据库·人工智能·mongodb·coco ai
果冻人工智能1 小时前
MCP 会成为下一个 HTTP 吗?看懂 AI 交流的下一个前线
人工智能