$R^n$超平面约束下的向量列

原向量: x → \overset{\rightarrow}{x} x→

与 x → \overset{\rightarrow}{x} x→法向相同的法向量(与 x → \overset{\rightarrow}{x} x→同向) ( x → ⋅ n → ∣ n → ∣ 2 ) n → (\frac{\overset{\rightarrow}x\cdot\overset{\rightarrow}n}{|\overset\rightarrow n|^2})\overset\rightarrow n (∣n→∣2x→⋅n→)n→(即原向量在法向的投影)

投影到超平面的向量 x → − ( x → ⋅ n → ∣ n → ∣ 2 ) n → \overset{\rightarrow}{x}-(\frac{\overset{\rightarrow}x\cdot\overset{\rightarrow}n}{|\overset\rightarrow n|^2})\overset\rightarrow n x→−(∣n→∣2x→⋅n→)n→(与 x → \overset{\rightarrow}{x} x→同向)

(就是一个向量三角形)

比如 x → = ( x 1 , ⋯ x n ) \overset{\rightarrow}{x}=(x_1,\cdots x_n) x→=(x1,⋯xn),梯度约束在 x 1 + ⋯ + x n = 1 x_1+\cdots+x_n=1 x1+⋯+xn=1中,那么

python 复制代码
grad = list(map(lambda x: x-tf.reshape(tf.reshape(x, [1,-1])@tf.ones([x.shape[0],1]),[])/(x.shape[0])*tf.ones([x.shape[0]]), grad))

要做一次投影,让梯度也满足约束,从而当初始点满足约束时,这样使用梯度下降可以使得点列一直满足约束

相关推荐
仙人掌_lz4 分钟前
Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型
人工智能·python·ai·lora·llm·微调·qwen3
美林数据Tempodata1 小时前
大模型驱动数据分析革新:美林数据智能问数解决方案破局传统 BI 痛点
数据库·人工智能·数据分析·大模型·智能问数
硅谷秋水1 小时前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
正儿八经的数字经2 小时前
人工智能100问☞第46问:AI是如何“学习”的?
人工智能·学习
飞哥数智坊2 小时前
别卷提示词了!像带新人一样“带”AI,产出效率翻倍
人工智能
扫地的小何尚2 小时前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
m0_575470883 小时前
n8n实战:自动化生成AI日报并发布
人工智能·ai·自动化·ai自动写作
时空无限3 小时前
使用 ollama 在 mac 本地部署一个 qwen3:8b 模型
人工智能·语言模型
平行云3 小时前
LarkXR 赋能AI x XR数字供应链:引领智能设计、数字孪生与零售新未来
人工智能·webrtc·xr·云渲染·虚幻引擎·云展厅