【调研】YOLO算法在FPGA/ZYNQ上的部署与加速

FINN 是 AMD 研究与高级开发部门综合通信和人工智能实验室开发的机器学习框架。它为在 FPGA 上探索和实施量化神经网络推理解决方案提供了端到端流程。FINN 生成数据流架构作为空间中实施的自定义网络的物理表示。它不是通用的 DNN 加速解决方案,而是依赖于协同设计和设计空间探索来进行量化和并行化调整,从而根据资源和性能要求优化解决方案。

特征

  • 模板化的 Vitis HLS 和 RTL 流组件库: FINN 附带 HLS 和 RTL 模块库,可将神经网络层实现为流组件。
  • 通过数据流实现超低延迟和高性能:通过为每一层组合流式传输组件,FINN 可以生成能够以亚微秒延迟对图像进行分类的加速器。
  • 许多端到端示例设计:我们提供的示例从训练量化神经网络开始,一直到在硬件上运行的加速设计。这些示例涵盖了一系列数据集和网络拓扑。
  • 快速设计生成的工具流: FINN 工具流支持自动或手动为每层分配单独的计算资源,并生成完整的设计以供综合。这样可以快速探索设计空间。

FINN 团队由 Ralph Wittig 领导的 AMD 研究成员(AMD 研究与高级开发部)以及 Allen Chen 领导的定制与战略工程部成员组成,与 Pynq 团队密切合作。

从左上到右下:Yaman Umuroglu、Michaela Blott、Thomas Preusser、Jakoba Petri-Koenig、Lucian Petrica、Nicholas Fraser、Linus Witschen、Ken O'Brien、Tobias Alonso Pugliese、Petra Hrg

从左上到右下:Eamonn Dunbar、Kasper Feurer、Aziz Bahri、John Monks、Mirza Mrahorovic

相关推荐
深度学习lover15 分钟前
<数据集>yolo梨幼果识别数据集<目标检测>
python·yolo·目标检测·计算机视觉·数据集
格林威2 小时前
工业检测机器视觉为啥非用工业相机?普通相机差在哪?
人工智能·数码相机·yolo·计算机视觉·视觉检测·相机
格林威10 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
ShiMetaPi17 小时前
操作【GM3568JHF】FPGA+ARM异构开发板 使用指南:蓝牙
arm开发·嵌入式硬件·fpga开发·rk3568
shao91851619 小时前
Gradio全解11——Streaming:流式传输的视频应用(3)——YOLO系列模型技术架构与实战
yolo·coco·yolov10·yoloe
知识充实人生1 天前
静态时序分析详解之时序路径类型
fpga开发·时序路径·关键路径
JoinApper2 天前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
9527华安2 天前
Xilinx系列FPGA实现DP1.4视频收发,支持4K60帧分辨率,提供2套工程源码和技术支持
fpga开发·音视频·dp1.4·4k60帧
cycf2 天前
高速接口基础
fpga开发
forgeda2 天前
从Vivado集成Lint功能,看FPGA设计的日益ASIC化趋势
fpga开发·vivado·lint·eco·静态检查功能