CUDA error: no kernel image is available for execution on the device

1. 报错

在cuda+cudnn+pytorch环境下运行大模型,报如下错误信息:

复制代码
Setting `pad_token_id` to `eos_token_id`:151643 for open-end generation.
收到请求 /chat error===========================>error:CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

2. 如何解决

出现这种问题的原因就是环境问题:

2.1 cuda+cudnn配置是否正确

2.2 cuda版本与pytorch的版本是否匹配

这个没有什么好办法因为每个人机器不一样(安装流程就是:1.安装cuda+cudnn;2.安装pytorch;3.安装transforms;),就是利用conda创建一个新的环境,然后重新安装环境

这里提供一个测试环境是否有问题的python代码,如果这个代码能够执行,那么cuda+cudnn+pytorch环境就基本没有什么问题:

复制代码
import torch  # 导入 PyTorch 库
print("PyTorch 版本:", torch.__version__)  # 打印 PyTorch 的版本号
 
# 检查 CUDA 是否可用,并设置设备("cuda:0" 或 "cpu")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("设备:", device)  # 打印当前使用的设备
print("CUDA 可用:", torch.cuda.is_available())  # 打印 CUDA 是否可用
print("cuDNN 已启用:", torch.backends.cudnn.enabled)  # 打印 cuDNN 是否已启用
 
# 打印 PyTorch 支持的 CUDA 和 cuDNN 版本
print("支持的 CUDA 版本:", torch.version.cuda)
print("cuDNN 版本:", torch.backends.cudnn.version())
 
# 创建两个随机张量(默认在 CPU 上)
x = torch.rand(5, 3)
y = torch.rand(5, 3)
 
# 将张量移动到指定设备(CPU 或 GPU)
x = x.to(device)
y = y.to(device)
 
# 对张量进行逐元素相加
z = x + y
 
# 打印结果
print("张量 z 的值:")
print(z)  # 输出张量 z 的内容>>>
print("PyTorch 版本:", torch.__version__)  # 打印 PyTorch 的版本号

# 检查 CUDA 是否可用,并设置设备("cuda:0" 或 "cpu")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("设备:", device)  # 打印当前使用的设备

print("CUDA 可用:", torch.cuda.is_available())  # 打印 CUDA 是否可用

print("cuDNN 已启用:", torch.backends.cudnn.enabled)  # 打印 cuDNN 是否已启用


# 打印 PyTorch 支持的 CUDA 和 cuDNN 版本
print("支持的 CUDA 版本:", torch.version.cuda)

print("cuDNN 版本:", torch.backends.cudnn.version())

# 创建两个随机张量(默认在 CPU 上)
x = torch.rand(5, 3)
y = torch.rand(5, 3)

# 将张量移动到指定设备(CPU 或 GPU)
x = x.to(device)
y = y.to(device)

# 对张量进行逐元素相加
z = x + y

# 打印结果
print("张量 z 的值:")

print(z)  # 输出张量 z 的内容

3. 我操作的思路

  1. cuda安装

查看教程: 1.ubunbu 22.04安装nvidia驱动.mhtml

chmod +x NVIDIA-Linux-x86_64-570.133.07.run

./NVIDIA-Linux-x86_64-570.133.07.run

nvidia-smi

  1. cudnn

官网: https://developer.nvidia.com/cudnn-downloads

wget https://developer.download.nvidia.com/compute/cudnn/9.8.0/local_installers/cudnn-local-repo-ubuntu2404-9.8.0_1.0-1_amd64.deb

sudo dpkg -i cudnn-local-repo-ubuntu2404-9.8.0_1.0-1_amd64.deb

sudo cp /var/cudnn-local-repo-ubuntu2404-9.8.0/cudnn-*-keyring.gpg /usr/share/keyrings/

sudo apt-get update

sudo apt-get -y install cudnn

  1. pytorch安装

pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128

  1. transforms

pip install transformers datasets tokenizers -i https://pypi.tuna.tsinghua.edu.cn/simple

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房7 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习