CUDA error: no kernel image is available for execution on the device

1. 报错

在cuda+cudnn+pytorch环境下运行大模型,报如下错误信息:

复制代码
Setting `pad_token_id` to `eos_token_id`:151643 for open-end generation.
收到请求 /chat error===========================>error:CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

2. 如何解决

出现这种问题的原因就是环境问题:

2.1 cuda+cudnn配置是否正确

2.2 cuda版本与pytorch的版本是否匹配

这个没有什么好办法因为每个人机器不一样(安装流程就是:1.安装cuda+cudnn;2.安装pytorch;3.安装transforms;),就是利用conda创建一个新的环境,然后重新安装环境

这里提供一个测试环境是否有问题的python代码,如果这个代码能够执行,那么cuda+cudnn+pytorch环境就基本没有什么问题:

复制代码
import torch  # 导入 PyTorch 库
print("PyTorch 版本:", torch.__version__)  # 打印 PyTorch 的版本号
 
# 检查 CUDA 是否可用,并设置设备("cuda:0" 或 "cpu")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("设备:", device)  # 打印当前使用的设备
print("CUDA 可用:", torch.cuda.is_available())  # 打印 CUDA 是否可用
print("cuDNN 已启用:", torch.backends.cudnn.enabled)  # 打印 cuDNN 是否已启用
 
# 打印 PyTorch 支持的 CUDA 和 cuDNN 版本
print("支持的 CUDA 版本:", torch.version.cuda)
print("cuDNN 版本:", torch.backends.cudnn.version())
 
# 创建两个随机张量(默认在 CPU 上)
x = torch.rand(5, 3)
y = torch.rand(5, 3)
 
# 将张量移动到指定设备(CPU 或 GPU)
x = x.to(device)
y = y.to(device)
 
# 对张量进行逐元素相加
z = x + y
 
# 打印结果
print("张量 z 的值:")
print(z)  # 输出张量 z 的内容>>>
print("PyTorch 版本:", torch.__version__)  # 打印 PyTorch 的版本号

# 检查 CUDA 是否可用,并设置设备("cuda:0" 或 "cpu")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("设备:", device)  # 打印当前使用的设备

print("CUDA 可用:", torch.cuda.is_available())  # 打印 CUDA 是否可用

print("cuDNN 已启用:", torch.backends.cudnn.enabled)  # 打印 cuDNN 是否已启用


# 打印 PyTorch 支持的 CUDA 和 cuDNN 版本
print("支持的 CUDA 版本:", torch.version.cuda)

print("cuDNN 版本:", torch.backends.cudnn.version())

# 创建两个随机张量(默认在 CPU 上)
x = torch.rand(5, 3)
y = torch.rand(5, 3)

# 将张量移动到指定设备(CPU 或 GPU)
x = x.to(device)
y = y.to(device)

# 对张量进行逐元素相加
z = x + y

# 打印结果
print("张量 z 的值:")

print(z)  # 输出张量 z 的内容

3. 我操作的思路

  1. cuda安装

查看教程: 1.ubunbu 22.04安装nvidia驱动.mhtml

chmod +x NVIDIA-Linux-x86_64-570.133.07.run

./NVIDIA-Linux-x86_64-570.133.07.run

nvidia-smi

  1. cudnn

官网: https://developer.nvidia.com/cudnn-downloads

wget https://developer.download.nvidia.com/compute/cudnn/9.8.0/local_installers/cudnn-local-repo-ubuntu2404-9.8.0_1.0-1_amd64.deb

sudo dpkg -i cudnn-local-repo-ubuntu2404-9.8.0_1.0-1_amd64.deb

sudo cp /var/cudnn-local-repo-ubuntu2404-9.8.0/cudnn-*-keyring.gpg /usr/share/keyrings/

sudo apt-get update

sudo apt-get -y install cudnn

  1. pytorch安装

pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128

  1. transforms

pip install transformers datasets tokenizers -i https://pypi.tuna.tsinghua.edu.cn/simple

相关推荐
悟道心6 分钟前
7. 自然语言处理NLP - Bert
人工智能·自然语言处理·bert
头发还在的女程序员13 分钟前
小剧场短剧影视小程序源码分享,搭建自己的短剧小程序
人工智能·小程序·短剧·影视·微剧
l1t17 分钟前
NineData第三届数据库编程大赛:用一条 SQL 解数独问题我的参赛程序
数据库·人工智能·sql·算法·postgresql·oracle·数独
土豆.exe27 分钟前
若爱 (IfAI) v0.2.6 - 智能体进化:任务拆解与环境感知
人工智能
colfree32 分钟前
Scanpy
人工智能·机器学习
koo3641 小时前
pytorch深度学习笔记12
pytorch·笔记·深度学习
Akamai中国1 小时前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·云服务·云存储
雨大王5121 小时前
汽车AI智能体矩阵:驱动行业智能化变革的新范式
人工智能·汽车
SmartRadio1 小时前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora