从零实现本地大模型RAG部署

1. RAG概念

RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合信息检索与大型语言模型(大模型)的技术。从外部知识库(如文档、数据库或网页)中实时检索相关信息,并将其作为输入提供给 大模型,从而增强模型生成答案的能力,具体是指在大模型生成回答之前,先从知识库中查找相关的知识内容,增强信息生成过程中的知识库中的内容,从而提升生成的质量和准确性,这一过程分为三个阶段:

检索 :使用向量数据库和近似最近邻(ANN)算法快速定位与查询相关的文本片段。
融合 :将检索到的信息处理后与原始查询结合,形成扩展的上下文。
生成:大模型 基于融合后的上下文生成最终答案,减少"幻觉"现象。

2. RAGFlow 部署

RAGFlow是一个基于深度文档理解的开源RAG引擎。它为任何规模的企业提供了一个简化的RAG工作流程,结合LLM(大型语言模型)提供真实的问答功能,并得到各种复杂格式数据的充分引用。

2.1 源码加载

bash 复制代码
# 网盘地址: https://pan.baidu.com/s/1m0nUnq5po4zpnIWPvU_obw?pwd=zhen
git clone git@github.com:infiniflow/ragflow.git

2.2 修改配置版本

bash 复制代码
$ cd ragflow/docker
# 修改配置文件安装v0.17.2,默认是v0.17.2-slim
nano .env
RAGFlow 镜像标签 镜像大小 (GB) 具备嵌入模型 是否稳定版
v0.17.2 ≈9 ✔️
v0.17.2-slim ≈2
nightly ≈9 ✔️
nightly-slim ≈2

2.3 docker执行安装

bash 复制代码
cd 
# 仅使用CPU 执行任务:
# docker compose -f docker-compose.yml up -d
# 使用 GPU 加速:
docker compose -f docker-compose-gpu.yml up -d


3. 运行效果

bash 复制代码
http://localhost:80


相关推荐
亚里随笔1 小时前
VERLTOOL:打通LLM工具强化学习的“任督二脉”,实现多模态多任务统一训练
人工智能·语言模型·llm·agentic
这张生成的图像能检测吗4 小时前
(论文速读)视觉语言模型评价中具有挑战性的选择题的自动生成
人工智能·计算机视觉·语言模型·视觉语言模型
LLM精进之路9 小时前
美团发布 | LongCat-Flash最全解读,硬刚GPT-4.1、Kimi!
人工智能·深度学习·机器学习·语言模型·transformer
智慧地球(AI·Earth)9 小时前
开源 + 免费!谷歌推出 Gemini CLI,Claude Code 的强劲对手
人工智能·语言模型·开源
catcfm11 小时前
MiniDrive:面向自动驾驶的更高效的视觉语言模型
人工智能·深度学习·语言模型·自动驾驶
deepdata_cn18 小时前
开源混合专家大语言模型(DBRX)
人工智能·语言模型
和鲸社区1 天前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
Gyoku Mint1 天前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
nju_spy1 天前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
CodeCraft Studio1 天前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word