从零实现本地大模型RAG部署

1. RAG概念

RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合信息检索与大型语言模型(大模型)的技术。从外部知识库(如文档、数据库或网页)中实时检索相关信息,并将其作为输入提供给 大模型,从而增强模型生成答案的能力,具体是指在大模型生成回答之前,先从知识库中查找相关的知识内容,增强信息生成过程中的知识库中的内容,从而提升生成的质量和准确性,这一过程分为三个阶段:

检索 :使用向量数据库和近似最近邻(ANN)算法快速定位与查询相关的文本片段。
融合 :将检索到的信息处理后与原始查询结合,形成扩展的上下文。
生成:大模型 基于融合后的上下文生成最终答案,减少"幻觉"现象。

2. RAGFlow 部署

RAGFlow是一个基于深度文档理解的开源RAG引擎。它为任何规模的企业提供了一个简化的RAG工作流程,结合LLM(大型语言模型)提供真实的问答功能,并得到各种复杂格式数据的充分引用。

2.1 源码加载

bash 复制代码
# 网盘地址: https://pan.baidu.com/s/1m0nUnq5po4zpnIWPvU_obw?pwd=zhen
git clone git@github.com:infiniflow/ragflow.git

2.2 修改配置版本

bash 复制代码
$ cd ragflow/docker
# 修改配置文件安装v0.17.2,默认是v0.17.2-slim
nano .env
RAGFlow 镜像标签 镜像大小 (GB) 具备嵌入模型 是否稳定版
v0.17.2 ≈9 ✔️
v0.17.2-slim ≈2
nightly ≈9 ✔️
nightly-slim ≈2

2.3 docker执行安装

bash 复制代码
cd 
# 仅使用CPU 执行任务:
# docker compose -f docker-compose.yml up -d
# 使用 GPU 加速:
docker compose -f docker-compose-gpu.yml up -d


3. 运行效果

bash 复制代码
http://localhost:80


相关推荐
Ailerx24 分钟前
OpenAI隆重推出开源大模型:GPT-OSS
gpt·语言模型·开源·大模型·github·开源协议
MUTA️1 小时前
《CogAgent: A Visual Language Model for GUI Agents》论文精读笔记
人工智能·笔记·语言模型·多模态
weixin_438077492 小时前
langchain入门笔记02:几个实际应用
服务器·langchain·rag
勤劳的进取家18 小时前
论文阅读: Mobile Edge Intelligence for Large LanguageModels: A Contemporary Survey
论文阅读·人工智能·语言模型
第六五18 小时前
大型音频语言模型论文总结
人工智能·语言模型·音视频
开放知识图谱21 小时前
论文浅尝 | 利用大语言模型进行高效实体对齐(ACL2024)
人工智能·语言模型·自然语言处理
软件测试-阿涛1 天前
2025年大语言模型与多模态生成工具全景指南(V2.0)
大数据·图像处理·人工智能·语言模型·视频
nanxun___1 天前
【多模态微调】【从0开始】Qwen2-VL + llamafactory
人工智能·python·深度学习·机器学习·语言模型
彭军辉1 天前
什么是抽象主义人工智能?
人工智能·算法·语言模型·机器人
计算机科研圈2 天前
字节Seed发布扩散语言模型,推理速度达2146 tokens/s,比同规模自回归快5.4倍
人工智能·语言模型·自然语言处理·数据挖掘·开源·字节