LLM-大语言模型浅谈

目录

核心定义

典型代表

核心原理

用途

优势与局限

未来发展方向


LLM(Large Language Model)大语言模型,指通过海量文本数据训练 能够理解和生成人类语言的深度学习模型。

核心定义

一种基于深度神经网络(如Transformer架构)的模型,通过预训练(Pre-Training)从海量文本中学习语言规律,并能够生成连贯的文本或者完成特定任务(如问答 翻译 写作)

典型代表

  • OpenAI的GPT系列(GPT-3.5 GPT-4 GPT-4o)
  • google的PaLM
  • Meta的LLMA
  • DeepSeek的DeepSeekd-R1

核心原理

| 技术要点 | 说明 |
| Transformer架构 | 核心是自注意力机制(Self-Attention),可并行处理长文本并捕捉词语间复杂关系 |
| 预训练+微调 | 先在无标注数据上预训练(学习语言规律),在针对特定任务微调(如客服 编程) |

上下文理解 通过输入提示词(Prompt)动态生成相应,支持多轮对话和复杂逻辑推理

用途

| 应用场景 | 示例 |
| 文本生成 | 写文章、故事、营销文案、代码等 |
| 问答与对话 | 只能客服、知识库查询(如ChatGPT) |
| 翻译与总结 | 对语言互译,分析数据,编写程序 |
| 逻辑推理 | 解数学题,分析数据,编写程序 |

搜索增强 结合知识库生成更准确的安安(如 New Bing)

优势与局限

优势 局限
**泛化能力强:**无需针对每个任务单独设计模型,通过Prompt即可适配多种场景。 幻觉 :可能生成看似合理但是不符合事实的内容(需结合知识库缓解)
**语言理解深:**能捕捉隐含语言,幽默,比喻等复杂语言现象 **偏见与安全风险:**训练数据中的偏见可能导致输出不当内容,需要人工审核和干预
**持续进化:**通过人类反馈强化学习(RLHF)和微调,逐步提升安全和准确性 **缺乏真正理解:**本质是统计模式匹配,而非具备人类认知或意识
**算力成本高:**训练和运行大模型消耗大量计算资源

未来发展方向

**更小、更高效:**优化模型(如 MoE 架构),降低算力

**多模态融合:**结合图像、音频等多维度信息,如 (GPT-4V)

**领域专业化:**针对医疗、法律等垂直领域训练专用模型

相关推荐
carpell23 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人36 分钟前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu1 小时前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
Tianyanxiao1 小时前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
rit84324991 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点1 小时前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
科技小E1 小时前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域2 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln2 小时前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
huan_19932 小时前
Spring AI中使用ChatMemory实现会话记忆功能
ai·spring ai·模型记忆·springai开发·chatmemory