LLM-大语言模型浅谈

目录

核心定义

典型代表

核心原理

用途

优势与局限

未来发展方向


LLM(Large Language Model)大语言模型,指通过海量文本数据训练 能够理解和生成人类语言的深度学习模型。

核心定义

一种基于深度神经网络(如Transformer架构)的模型,通过预训练(Pre-Training)从海量文本中学习语言规律,并能够生成连贯的文本或者完成特定任务(如问答 翻译 写作)

典型代表

  • OpenAI的GPT系列(GPT-3.5 GPT-4 GPT-4o)
  • google的PaLM
  • Meta的LLMA
  • DeepSeek的DeepSeekd-R1

核心原理

| 技术要点 | 说明 |
| Transformer架构 | 核心是自注意力机制(Self-Attention),可并行处理长文本并捕捉词语间复杂关系 |
| 预训练+微调 | 先在无标注数据上预训练(学习语言规律),在针对特定任务微调(如客服 编程) |

上下文理解 通过输入提示词(Prompt)动态生成相应,支持多轮对话和复杂逻辑推理

用途

| 应用场景 | 示例 |
| 文本生成 | 写文章、故事、营销文案、代码等 |
| 问答与对话 | 只能客服、知识库查询(如ChatGPT) |
| 翻译与总结 | 对语言互译,分析数据,编写程序 |
| 逻辑推理 | 解数学题,分析数据,编写程序 |

搜索增强 结合知识库生成更准确的安安(如 New Bing)

优势与局限

优势 局限
**泛化能力强:**无需针对每个任务单独设计模型,通过Prompt即可适配多种场景。 幻觉 :可能生成看似合理但是不符合事实的内容(需结合知识库缓解)
**语言理解深:**能捕捉隐含语言,幽默,比喻等复杂语言现象 **偏见与安全风险:**训练数据中的偏见可能导致输出不当内容,需要人工审核和干预
**持续进化:**通过人类反馈强化学习(RLHF)和微调,逐步提升安全和准确性 **缺乏真正理解:**本质是统计模式匹配,而非具备人类认知或意识
**算力成本高:**训练和运行大模型消耗大量计算资源

未来发展方向

**更小、更高效:**优化模型(如 MoE 架构),降低算力

**多模态融合:**结合图像、音频等多维度信息,如 (GPT-4V)

**领域专业化:**针对医疗、法律等垂直领域训练专用模型

相关推荐
拆房老料1 小时前
Transformer推理优化全景:从模型架构到硬件底层的深度解析
深度学习·ai·自然语言处理·transformer
CiLerLinux1 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20233 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits3 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT3334 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发4 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn
Aaplloo4 小时前
【无标题】
人工智能·算法·机器学习
大模型任我行4 小时前
复旦:LLM隐式推理SIM-CoT
人工智能·语言模型·自然语言处理·论文笔记
tomlone4 小时前
AI大模型核心概念
人工智能
可触的未来,发芽的智生5 小时前
触摸未来2025.10.06:声之密语从生理构造到神经网络的声音智能革命
人工智能·python·神经网络·机器学习·架构